Tutorial Week 9

Topics: Norms, inner products

9.1. Let V be an inner product space. Prove that for any $v \in V$ we have

$$||v|| = \sup_{||w||=1} |\langle v, w \rangle|.$$

Show that the supremum is in fact achieved by a well-chosen w.

Solution. If v = 0 then the equality is obvious.

So assume now that $v \neq 0$. By Cauchy–Schwarz we have for all $w \in V$:

$$|\langle v, w \rangle| \leqslant ||v|| \, ||w||.$$

Therefore for all $w \in V$ with ||w|| = 1 we have

$$|\langle v, w \rangle| \le ||v||,$$

so that

$$\sup_{\|w\|=1} |\langle v, w \rangle| \le \|v\|.$$

To get equality, take $w = \frac{1}{\|v\|}v$ and see that the LHS is indeed $\|v\|$.

9.2 (Pythagorean theorem). Let v_1, \ldots, v_n be pairwise orthogonal vectors in an inner product space V. Prove that

$$||v_1 + \dots + v_n||^2 = ||v_1||^2 + \dots + ||v_n||^2.$$

Solution. It suffices to prove this for two vectors v_1 and v_2 (easy induction follows):

$$||v_1 + v_2||^2 = \langle v_1 + v_2, v_1 + v_2 \rangle = \langle v_1, v_1 \rangle + \langle v_1, v_2 \rangle + \langle v_2, v_1 \rangle + \langle v_2, v_2 \rangle = ||v_1||^2 + ||v_2||^2.$$

- **9.3.** Let $(V, \|\cdot\|)$ be a normed space.
 - (a) Fix $u \in V$ and define $T_u : V \longrightarrow V$ by $T_u(v) = u + v$ for all $v \in V$. Prove that T_u is a bijective isometry.
 - (b) Fix $\alpha \in \mathbf{F}^{\times}$ and define $S_{\alpha} \colon V \longrightarrow V$ by $S_{\alpha}(v) = \alpha v$ for all $v \in V$. Prove that S_{α} is a homeomorphism.
 - (c) Let U_1, \ldots, U_n be nonempty open subsets of V. Let $\alpha_1, \ldots, \alpha_n \in \mathbf{F}$ such that at least one $\alpha_i \neq 0$. Let

$$U = \alpha_1 U_1 + \cdots + \alpha_n U_n$$
.

Prove that U is a nonempty open subset of V.

Solution.

(a) For all $v_1, v_2 \in V$ we have

$$d(T_u(v_1), T_u(v_2)) = ||T_u(v_1) - T_u(v_2)|| = ||u + v_1 - u - v_2|| = ||v_1 - v_2|| = d(v_1, v_2),$$

So T_u is an isometry. It is also bijective because T_{-u} is its inverse: $T_u \circ T_{-u} = \mathrm{id}_V = T_{-u} \circ T_u$.

(b) We can deduce that S_{α} is continuous from Proposition 3.3, but we can also prove it directly. Given $\varepsilon > 0$, let $\delta = \varepsilon/|\alpha|$ (this makes sense since $\alpha \in \mathbf{F}^{\times}$), then for all $v_1, v_2 \in V$ such that $||v_1 - v_2|| < \delta$ we have

$$||S_{\alpha}(v_1) - S_{\alpha}(v_2)|| = ||\alpha v_1 - \alpha v_2|| = |\alpha| ||v_1 - v_2|| < |\alpha|\delta = \varepsilon.$$

So S_{α} is continuous. It is also bijective because $S_{1/\alpha}$ is its inverse, and $S_{1/\alpha}$ is itself continuous by the above, so S_{α} is a homeomorphism.

(c) By part (b), if $\alpha_i \neq 0$ and U_i is nonempty open, then $\alpha_i U_i$ is nonempty open. It remains to check that the sum of two nonempty open sets W_1 and W_2 is a nonempty open set:

$$W_1 + W_2 = \{w_1 + w_2 \colon w_1 \in W_1, w_2 \in W_2\} = \bigcup_{w_1 \in W_1} \{w_1 + w_2 \colon w_2 \in W_2\} = \bigcup_{w_1 \in W_1} T_{w_1}(W_2),$$

which is a union of open sets by part (a), hence open. It is clear that $W_1 + W_2$ is nonempty if both W_1 and W_2 are nonempty.

- **9.4.** Prove that the following norms on \mathbb{R}^n are not defined by inner products:
 - (a) the ℓ^1 -norm defined by

$$\|(x_1,\ldots,x_n)\|_1 = \sum_{i=1}^n |x_i|,$$

(b) the ℓ^{∞} -norm defined by

$$\|(x_1,\ldots,x_n)\|_{\infty} = \max\{|x_1|,\ldots,|x_n|\}.$$

Solution. We will verify that neither of the two norms satisfy the Parallelogram Law (Proposition 3.10), so they cannot be defined by inner products. Let $e_1 = (1, 0, ..., 0)$ and $e_2 = (0, 1, 0, ..., 0)$.

(a) We have $||e_1||_1 = ||e_2||_1 = 1$ and $||e_1 + e_2||_1 = ||e_1 - e_2||_1 = 2$, so

$$||e_1 + e_2||_1^2 + ||e_1 - e_2||_1^2 = 8 \neq 4 = 2(||e_1||_1^2 + ||e_2||_1^2).$$

(b) We have $||e_1||_{\infty} = ||e_2||_{\infty} = ||e_1 + e_2||_{\infty} = ||e_1 - e_2||_{\infty} = 1$, so

$$||e_1 + e_2||_{\infty}^2 + ||e_1 - e_2||_{\infty}^2 = 2 \neq 4 = 2(||e_1||_{\infty}^2 + ||e_2||_{\infty}^2).$$

9.5. Let $(V, \|\cdot\|)$ be a Banach space. Prove that if a series $\sum_{n=1}^{\infty} a_n$ in V converges absolutely, then

$$\left\| \sum_{n=1}^{\infty} a_n \right\| \leqslant \sum_{n=1}^{\infty} \|a_n\|.$$

(If V is not complete, the result still holds under the extra assumption that the series **converges** in V.)

Solution. If V is Banach, any absolutely convergent series converges, so the left hand side of the desired inequality makes sense.

The claim now follows from the usual triangle inequality. For any $m \in \mathbb{N}$, we have

$$||a_1 + \dots + a_m|| \le ||a_1|| + \dots + ||a_m||.$$

Taking limits as $m \longrightarrow \infty$ we get

$$\left\| \sum_{n=1}^{\infty} a_n \right\| = \left\| \lim_{m \to \infty} \sum_{n=1}^{m} a_n \right\| = \lim_{m \to \infty} \left\| \sum_{n=1}^{m} a_n \right\| \le \lim_{m \to \infty} \sum_{n=1}^{m} \|a_n\| = \sum_{n=1}^{\infty} \|a_n\|.$$

9.6. Prove that every finite-dimensional normed vector space V is separable. More precisely, fix a basis $\{v_1, \ldots, v_n\}$ of V and let

$$\mathbf{K} = \begin{cases} \mathbf{Q} & \text{if } \mathbf{F} = \mathbf{R} \\ \mathbf{Q}[i] & \text{if } \mathbf{F} = \mathbf{C} \end{cases} \quad \text{and } D = \mathrm{Span}_{\mathbf{K}} \{ v_1, \dots, v_n \}.$$

Prove that D is a dense countable subset of V.

Solution. We start by noting that **K** is dense in **F**. We already know this for **Q** in **R**. For **Q**[i] in **C** = **R**[i]: given z = x + iy and $\varepsilon > 0$, let $p, q \in \mathbf{Q}$ be such that $|p - x| < \varepsilon/2$ and $|q - y| < \varepsilon/2$. Then

$$|(p+iq)-z| = |(p-x)+i(q-y)| \le |p-x|+|q-y| < \varepsilon.$$

By Theorem 3.7, the norm on V is equivalent to the norm $\|\cdot\|_1$ defined by

$$\|\alpha_1 v_1 + \dots + \alpha_n v_n\|_1 = |\alpha_1| + \dots + |\alpha_n|.$$

Since separability is a property of topological spaces and equivalent norms give rise to the same topology (see Exercise 2.2), we can assume without loss of generality that V is equipped with the norm $\|\cdot\|_1$.

Let $v \in V$ and $\varepsilon > 0$. We have

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n, \qquad \alpha_i \in \mathbf{F}.$$

For each i, there exists $\beta_i \in \mathbf{K}$ such that $|\alpha_i - \beta_i| < \varepsilon/n$. Define

$$v' = \beta_1 v_1 + \dots + \beta_n v_n \in D.$$

We have

$$||v - v'|| = ||(\alpha_1 - \beta_1)v_1 + \dots + (\alpha_n - \beta_n)v_n||_1 = |\alpha_1 - \beta_1| + \dots + |\alpha_n - \beta_n| < \varepsilon.$$

The set D is countable because it is the Cartesian product of n copies of the countable field K.