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Tutorial Week 9

Topics: Norms, inner products

9.1. Let V be an inner product space. Prove that for any v ∈ V we have

∥v∥ = sup
∥w∥=1

∣⟨v,w⟩∣.

Show that the supremum is in fact achieved by a well-chosen w.

Solution. If v = 0 then the equality is obvious.
So assume now that v ≠ 0. By Cauchy–Schwarz we have for all w ∈ V :

∣⟨v,w⟩∣ ⩽ ∥v∥ ∥w∥.

Therefore for all w ∈ V with ∥w∥ = 1 we have

∣⟨v,w⟩∣ ⩽ ∥v∥,

so that
sup
∥w∥=1

∣⟨v,w⟩∣ ⩽ ∥v∥.

To get equality, take w = 1
∥v∥ v and see that the LHS is indeed ∥v∥.

9.2 (Pythagorean theorem). Let v1, . . . , vn be pairwise orthogonal vectors in an inner product
space V . Prove that

∥v1 + ⋅ ⋅ ⋅ + vn∥2 = ∥v1∥2 + ⋅ ⋅ ⋅ + ∥vn∥2.

Solution. It suffices to prove this for two vectors v1 and v2 (easy induction follows):

∥v1 + v2∥2 = ⟨v1 + v2, v1 + v2⟩ = ⟨v1, v1⟩ + ⟨v1, v2⟩ + ⟨v2, v1⟩ + ⟨v2, v2⟩ = ∥v1∥2 + ∥v2∥2.

9.3. Let (V, ∥ ⋅ ∥) be a normed space.

(a) Fix u ∈ V and define Tu ∶ V Ð→ V by Tu(v) = u + v for all v ∈ V . Prove that Tu is a
bijective isometry.

(b) Fix α ∈ F× and define Sα ∶ V Ð→ V by Sα(v) = αv for all v ∈ V . Prove that Sα is a
homeomorphism.

(c) Let U1, . . . , Un be nonempty open subsets of V . Let α1, . . . , αn ∈ F such that at least
one αi ≠ 0. Let

U = α1U1 + ⋅ ⋅ ⋅ + αnUn.

Prove that U is a nonempty open subset of V .

Solution.

(a) For all v1, v2 ∈ V we have

d(Tu(v1), Tu(v2)) = ∥Tu(v1) − Tu(v2)∥ = ∥u + v1 − u − v2∥ = ∥v1 − v2∥ = d(v1, v2),

So Tu is an isometry. It is also bijective because T−u is its inverse: Tu○T−u = idV = T−u○Tu.
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(b) We can deduce that Sα is continuous from Proposition 3.3, but we can also prove it
directly. Given ε > 0, let δ = ε/∣α∣ (this makes sense since α ∈ F×), then for all v1, v2 ∈ V
such that ∥v1 − v2∥ < δ we have

∥Sα(v1) − Sα(v2)∥ = ∥αv1 − αv2∥ = ∣α∣ ∥v1 − v2∥ < ∣α∣δ = ε.

So Sα is continuous. It is also bijective because S1/α is its inverse, and S1/α is itself
continuous by the above, so Sα is a homeomorphism.

(c) By part (b), if αi ≠ 0 and Ui is nonempty open, then αiUi is nonempty open. It remains
to check that the sum of two nonempty open sets W1 and W2 is a nonempty open set:

W1 +W2 = {w1 +w2 ∶ w1 ∈W1,w2 ∈W2} = ⋃
w1∈W1

{w1 +w2 ∶ w2 ∈W2} = ⋃
w1∈W1

Tw1(W2),

which is a union of open sets by part (a), hence open. It is clear that W1 +W2 is
nonempty if both W1 and W2 are nonempty.

9.4. Prove that the following norms on Rn are not defined by inner products:

(a) the `1-norm defined by
∥(x1, . . . , xn)∥1 =

n

∑
i=1

∣xi∣,

(b) the `∞-norm defined by

∥(x1, . . . , xn)∥∞ =max{∣x1∣, . . . , ∣xn∣}.

Solution. We will verify that neither of the two norms satisfy the Parallelogram Law (Propo-
sition 3.10), so they cannot be defined by inner products. Let e1 = (1,0, . . . ,0) and
e2 = (0,1,0, . . . ,0).

(a) We have ∥e1∥1 = ∥e2∥1 = 1 and ∥e1 + e2∥1 = ∥e1 − e2∥1 = 2, so

∥e1 + e2∥21 + ∥e1 − e2∥21 = 8 ≠ 4 = 2(∥e1∥21 + ∥e2∥21).

(b) We have ∥e1∥∞ = ∥e2∥∞ = ∥e1 + e2∥∞ = ∥e1 − e2∥∞ = 1, so

∥e1 + e2∥2∞ + ∥e1 − e2∥2∞ = 2 ≠ 4 = 2(∥e1∥2∞ + ∥e2∥2∞).

9.5. Let (V, ∥ ⋅ ∥) be a Banach space. Prove that if a series ∑∞n=1 an in V converges absolutely,
then

∥
∞

∑
n=1

an∥ ⩽
∞

∑
n=1

∥an∥.

(If V is not complete, the result still holds under the extra assumption that the series
converges in V .)

Solution. If V is Banach, any absolutely convergent series converges, so the left hand side of
the desired inequality makes sense.

The claim now follows from the usual triangle inequality. For any m ∈N, we have

∥a1 + ⋅ ⋅ ⋅ + am∥ ⩽ ∥a1∥ + ⋅ ⋅ ⋅ + ∥am∥.

Taking limits as mÐ→∞ we get

∥
∞

∑
n=1

an∥ = ∥ lim
mÐ→∞

m

∑
n=1

an∥ = lim
mÐ→∞

∥
m

∑
n=1

an∥ ⩽ lim
mÐ→∞

m

∑
n=1

∥an∥ =
∞

∑
n=1

∥an∥.
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9.6. Prove that every finite-dimensional normed vector space V is separable.
More precisely, fix a basis {v1, . . . , vn} of V and let

K =
⎧⎪⎪⎨⎪⎪⎩

Q if F =R
Q[i] if F =C

and D = SpanK{v1, . . . , vn}.

Prove that D is a dense countable subset of V .

Solution. We start by noting that K is dense in F. We already know this for Q in R. For
Q[i] in C = R[i]: given z = x + iy and ε > 0, let p, q ∈ Q be such that ∣p − x∣ < ε/2 and
∣q − y∣ < ε/2. Then

∣(p + iq) − z∣ = ∣(p − x) + i(q − y)∣ ⩽ ∣p − x∣ + ∣q − y∣ < ε.

By Theorem 3.7, the norm on V is equivalent to the norm ∥ ⋅ ∥1 defined by

∥α1v1 + ⋅ ⋅ ⋅ + αnvn∥1 = ∣α1∣ + ⋅ ⋅ ⋅ + ∣αn∣.

Since separability is a property of topological spaces and equivalent norms give rise to the
same topology (see Exercise 2.2), we can assume without loss of generality that V is equipped
with the norm ∥ ⋅ ∥1.

Let v ∈ V and ε > 0. We have

v = α1v1 + ⋅ ⋅ ⋅ + αnvn, αi ∈ F.

For each i, there exists βi ∈K such that ∣αi − βi∣ < ε/n. Define

v′ = β1v1 + ⋅ ⋅ ⋅ + βnvn ∈D.

We have

∥v − v′∥ = ∥(α1 − β1)v1 + ⋅ ⋅ ⋅ + (αn − βn)vn∥1 = ∣α1 − β1∣ + ⋅ ⋅ ⋅ + ∣αn − βn∣ < ε.

The set D is countable because it is the Cartesian product of n copies of the countable field
K.
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