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Tutorial Week 10

Topics: bounded linear transformations, convexity, sequence spaces.

10.1. Let X = C0([0,1],R) be the Banach space of continuous functions

f ∶ [0,1] Ð→R

with the supremum norm, as described in Proposition 3.13.
Define φ ∶ X Ð→R by φ(f) = f(0) for all f ∈X.
Prove that φ is a bounded linear map.

Solution. It is clear that φ is linear:

φ(f + g) = (f + g)(0) = f(0) + g(0) = φ(f) + φ(g)

and
φ(αf) = (αf)(0) = αf(0) = αφ(f).

It is also clearly bounded:
∣φ(f)∣ = ∣f(0)∣ ⩽ ∥f∥,

as ∥f∥ is the supremum of ∣f(x)∣ for x ∈ [0,1].

10.2. Let V , W be normed spaces over F. Let C be a convex subset of V and D a convex
subset of W . Prove that C ×D is a convex subset of V ×W .

Solution. This is straightforward: let (c1, d1), (c2, d2) ∈ C ×D and let t ∈ [0,1]. Then

t(c1, d1) + (1 − t)(c2, d2) = (tc1 + (1 − t)c2, td1 + (1 − t)d2) ∈ C ×D,

as tc1 + (1 − t)c2 ∈ C (since C is convex), and similarly td1 + (1 − t)d2 ∈D.

10.3 (Minkowski’s Inequality for `∞). Prove that if u, v ∈ `∞, then

∥u + v∥`∞ ⩽ ∥u∥`∞ + ∥v∥`∞ .

In particular, u + v ∈ `∞.

Solution. We have

∥u + v∥`∞ = sup
n∈N
{∣un + vn∣} ⩽ sup

n∈N
{∣un∣ + ∣vn∣} ⩽ sup

n∈N
∣un∣ + sup

n∈N
∣vn∣ = ∥u∥`∞ + ∥v∥`∞ .

10.4 (Hölder’s Inequality for `1 and `∞). Prove that if u = (un) ∈ `∞ and v = (vn) ∈ `1, then
∞
∑
n=1
∣unvn∣ ⩽ ∥u∥`∞∥v∥`1 .

Solution. By the definition of `∞ and the `∞-norm, we have ∣un∣ ⩽ ∥u∥`∞ for all n ∈ N.
Therefore for any m ∈N we have

m

∑
n=1
∣unvn∣ ⩽ ∥u∥∞

m

∑
n=1
∣vn∣,

but the latter series converges because v ∈ `1, to ∥v∥`1 and we get
∞
∑
n=1
∣unvn∣ ⩽ ∥u∥`∞∥v∥`1 .
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10.5. Suppose 1 ⩽ p ⩽ q. Prove that
`p ⊆ `q.

Show that if p < q then the inclusion is strict: `p ⊊ `q.
Solution. We prove that

∥x∥`q ⩽ ∥x∥`p for all x ∈ `p.
If ∥x∥`p = 0 then x = 0 so ∥x∥`q = 0 and the inequality obviously holds. So suppose x ≠ 0, then
by dividing through by ∥x∥`p we can reduce to proving that

∥x∥`q ⩽ 1 for all x such that ∥x∥`p = 1.
But if ∥x∥`p = 1 then

∞
∑
n=1
∣xn∣p = 1,

which means that for all n ∈ N we have ∣xn∣p ⩽ 1, so ∣xn∣ ⩽ 1. However, p ⩽ q and ∣xn∣ ⩽ 1
implies that ∣xn∣q ⩽ ∣xn∣p for all n ∈N, so that

∥x∥q`q =
∞
∑
n=1
∣xn∣q ⩽

∞
∑
n=1
∣xn∣p = 1.

If p < q then α ∶= q/p > 1. For each n ∈N, let

xn =
1

n1/p ,

so that
∣xn∣p =

1

n
, ∣xn∣q =

1

nα
.

We have
∥(xn)∥`p =

∞
∑
n=1

1

n
= ∞, ∥(xn)∥`q =

∞
∑
n=1

1

nα
< ∞,

so (xn) ∈ `q ∖ `p.
10.6.

(a) Prove that the function f ∶ `1 Ð→ F defined by

f((an)) =
∞
∑
n=1

an.

is continuous.

(b) Prove that the following subset is a closed subspace of `1:

S = { (an) ∈ `1 ∶
∞
∑
n=1

an = 0}.

Solution. (a) First note that this is a reasonable definition, because the infinite series on
the right hand side converges in F:

∣
N

∑
n=1

an∣ ⩽
N

∑
n=1
∣an∣,

and the latter converges as N Ð→∞ since (an) ∈ `1.
The function f is linear. It is also bounded, because as we have just seen:

∣f((an))∣ = ∣
∞
∑
n=1

an∣ ⩽
∞
∑
n=1
∣an∣ = ∥(an)∥`1 .

Hence f is continuous by Proposition 3.16.
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(b) As the kernel of the continuous linear functional f , the subset S of `1 is a closed
subspace.

10.7. Consider the left shift map L ∶ FN Ð→ FN given by L((an)) = (an+1), that is

L(a1, a2, a3, . . . ) = (a2, a3, . . . ).

(a) Prove that L is a surjective linear map. What is the kernel of L?

(b) Prove that for all 1 ⩽ p ⩽ ∞, the restriction of L to `p is a surjective continuous map
onto `p.

(c) Define the right shift map R ∶ FN Ð→ FN and prove that it is an injective linear map,
the restriction of which is an isometry for any `p with 1 ⩽ p ⩽ ∞.

(d) Check that L ○R = idFN ≠ R ○L.

Solution.

(a) It is clear that L is surjective. Linearity is pretty straightforward, and it’s also clear
that ker(L) = Span{e1}.

(b) We have

∥L(a1, a2, a3, . . . )∥`p = (
∞
∑
n=2
∣an∣p)

1/p
⩽ (

∞
∑
n=1
∣an∣p)

1/p
= ∥(a1, a2, . . . )∥`p ,

so L is bounded, and L((an)) ∈ `p if (an) ∈ `p.
For the surjectivity note that if b = (b1, b2, . . . ) ∈ `p, then

b = L(a) for a = (0, b1, b2, . . . )

and ∥a∥`p = ∥b∥`p , so a ∈ `p.
The case of `∞ is done in a similar way.

(c) To get a linear map we need to set

R(a1, a2, a3, . . . ) = (0, a1, a2, a3, . . . ).

Both injectivity and linearity are straightforward.
We have, for p ⩾ 1 or p = ∞:

∥R(a1, a2, . . . )∥`p = ∥(0, a1, a2, . . . )∥`p = ∥(a1, a2, . . . )∥`p ,

so R is an isometry and R(a) ∈ `p if a ∈ `p.

(d) Clear. For any a = (an) ∈ FN we have

L(R(a)) = L(R(a1, a2, . . . )) = L(0, a1, a2, . . . ) = (a1, a2, . . . ) = a,
R(L(a)) = R(L(a1, a2, . . . )) = R(a2, a3, . . . ) = (0, a2, a3, . . . ) ≠ a unless a1 = 0.
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