
Question 1. Let (X,d) be a metric space.

(a) Define the concept “D is a dense subset of X”.

(b) Show that D ⊆X is a dense subset of X if and only if D ∩U ≠ ∅ for all nonempty open
sets U in X.

(c) Prove that the intersection of two dense open sets U1 and U2 is dense.

Solution:

(a) X =D.

(b) Suppose D is dense and let U be nonempty open. Let x ∈ U . As U is open, there exists
Br(x) ⊆ U with r > 0. If x ∈ D, we are done. Otherwise, x ∈ X ∖D = D ∖D, so it is a
limit point of D, so there exists a ∈ Br(x) ∩D such that a ≠ x, hence a ∈ U ∩D.
Conversely, suppose D ∩ U is nonempty for any nonempty open U . Let x ∈ X ∖D.
For every r > 0, U ∶= Br(x) is open so D ∩Br(x) is nonempty, and x is not in this
intersection so there must be a point distinct from x in it, hence x ∈D.

(c) Let U12 = U1 ∩U2.
To show that U12 is dense, we use the previous part and show that U12 ∩U ≠ ∅ for all
nonempty open U :

U12 ∩U = (U1 ∩U2) ∩U = U1 ∩ (U2 ∩U).

Since U2 is dense and open, U2∩U is nonempty and open. Since U1 is dense, U1∩(U2∩U)
is nonempty. So U12 ∩U ≠ ∅, hence U12 is dense.
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Question 2. Let (X,d) be a metric space.

(a) Define the concept “D is a disconnected subset of X”.

(b) Prove that a subset D of X is disconnected if and only if there exists a surjective
continuous function g ∶ D Ð→ {0,1}, where {0,1} is given the discrete metric.

(c) Suppose A ⊆ X is a connected subset and {Ci ∶ i ∈ I} is an arbitrary collection of
connected subsets of X such that A ∩Ci ≠ ∅ for all i ∈ I. Prove that

B ∶= A ∪⋃
i∈I

Ci

is a connected subset of X.

Solution:

(a) There exist open subsets U and V of D such that

D = U ∪ V, U ∩ V = ∅, U ≠ ∅, V ≠ ∅.

(b) If such a function g exists, let U = g−1(0) and V = g−1(1), then U ≠ ∅, V ≠ ∅ since g is
surjective. As {0} ∩ {1} = ∅, we have U ∩ V = ∅. Clearly D = U ∪ V , and both U and V
are open since {0} and {1} are open. This implies that D is disconnected.
For the other direction, suppose that D is disconnected and write D = U ∪ V with U,V
as in the definition. Define g ∶ X Ð→ {0,1} by

g(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x ∈ U
1 if x ∈ V.

This is well-defined since U ∩ V = ∅. It is continuous as g−1(0) = U and g−1(1) = V are
open. It is surjective since it takes both values 0 and 1 (as both U and V are nonempty).

(c) Let g ∶ B Ð→ {0,1} be an arbitrary continuous function.
Its restriction g∣A ∶ A Ð→ {0,1} cannot be surjective, since A is connected. So g∣A is
constant, let’s say 0 for concreteness.
Now let i ∈ I. The restriction g∣Ci

∶ Ci Ð→ {0,1} must be constant, for the same reason
as before. But A ∩Ci ≠ ∅ and g is zero on A, so g must be zero on Ci.
As this holds for all i ∈ I, we conclude that g is zero on B.
So there is no surjective continuous map B Ð→ {0,1}, hence B must be connected.
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Question 3. Let (X,d) be a metric space.

(a) Define the concept “K is a compact subset of X”.

(b) Let C be a closed subset of a compact subset K of X. Prove that C is compact.

(c) Let K and L be compact subsets of X. Prove that K ∪L is compact.

Solution:

(a) Given any open cover of K:
K ⊆ ⋃

i∈I

Ui,

there exists a finite subset {i1, . . . , in} ⊆ I such that

K ⊆
n

⋃
j=1

Uij .

(b) Consider an arbitrary open cover of C:

C ⊆ ⋃
i∈I

Ui.

Then we have
K ⊆X = C ∪ (X ∖C) ⊆ (⋃

i∈I

Ui) ∪ (X ∖C),

which is an open cover of K. As K is compact, there is a finite subcover, so that

K ⊆ (
N

⋃
n=1

Uin) ∪ (X ∖C), in ∈ I,

hence
C ⊆

N

⋃
n=1

Uin .

(c) Consider an arbitrary open cover of K ∪L:

K ∪L ⊆ ⋃
i∈I

Ui.

This is also an open cover of K, so there is a finite subcover that still covers K:

K ⊆
N

⋃
n=1

Uin , in ∈ I.

Similarly, we get a finite subcover that covers L:

L ⊆
M

⋃
m=1

Ujm , jm ∈ I.

Letting S = {i1, . . . , iN} ∪ {j1, . . . , jM}, we get a finite subcover that covers K ∪L:

K ∪L ⊆ ⋃
s∈S

Us.
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Question 4. Consider the equation

(1) x3 − x − 1 = 0.

(a) Show that Equation (1) must have at least one solution in the interval [1,2].

(b) Show that the function f ∶ [1,2] Ð→ [1,2] given by

f(x) = (1 + x)1/3

is a contraction.

(c) Show that Equation (1) has a unique solution ξ in the interval [1,2] and describe a
sequence of real numbers that converges to ξ.

Solution:

(a) We can use the Intermediate Value Theorem, as x3 − x − 1 is clearly continuous. At
x = 1, x3 − x − 1 = −1 < 0, while at x = 2, x3 − x − 1 = 5 > 0, so there must be at least one
point x in [1,2] such that x3 − x − 1 = 0.

(b) The derivative of f is

f ′(x) = 1

3
(1 + x)−2/3 = 1

3

1

(1 + x)2/3 .

As x ∈ [1,2], we have f ′(x) > 0 and

1 ⩽ x⇒ 2 ⩽ 1 + x⇒ 1

1 + x ⩽
1

2
⇒ 1

(1 + x)2/3 ⩽
1

22/3
⩽ 1,

so that
f ′(x) ⩽ 1

3
.

Now let x, y be such that 1 ⩽ x < y ⩽ 2 and apply the Mean Value Theorem to f on
[x, y] to deduce that there exists c ∈ (x, y) such that

f(y) − f(x)
y − x = f ′(c) ⇒ ∣f(y) − f(x)∣ = ∣f ′(c)∣ ∣y − x∣ ⩽ 1

3
∣y − x∣.

We conclude that f is a contraction.

(c) Observe that x3 −x−1 = 0 is equivalent to f(x) = x, so the solutions of Equation (1) are
precisely the fixed points of f . As f is a contraction and [1,2] is complete, the Banach
Fixed Point Theorem says that there is a unique fixed point ξ in [1,2]. It also tells us
that we can start with any x1 ∈ [1,2], for instance x1 = 1, and iteratively apply f to get
a sequence (xn) converging to ξ:

x1 = 1, x2 = f(x1) = 21/3, x3 = f(x2) = (1 + 21/3)
1/3

, . . .
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Question 5. (a) Let f ∈ L(V,W ) be a continuous linear map between normed spaces.
Prove that if U is a closed subspace of W , then its preimage f−1(U) is a closed subspace
of V .

(b) Prove that the following set of sequences

S = {(an) ∈ `1 ∶
∞

∑
n=1

an = 0}

is a closed subspace of the Banach space `1:

`1 = {(an) ∈ FN ∶
∞

∑
n=1

∣an∣ < ∞} .

Solution:

(a) Clear since f is linear so the inverse image of a subspace is a subspace; and f is
continuous so the inverse image of a closed set is a closed set.

(b) Consider the function f ∶ `1 Ð→ F given by

f((an)) =
∞

∑
n=1

an.

First note that this is a reasonable definition, because the infinite series on the right
hand side converges in F:

∣
N

∑
n=1

an∣ ⩽
N

∑
n=1

∣an∣,

and the latter converges as N Ð→∞ since (an) ∈ `1.
The function f is linear. It is also continuous, because as we have just seen:

∣f((an))∣ = ∣
∞

∑
n=1

an∣ ⩽
∞

∑
n=1

∣an∣ = ∥(an)∥`1 .

Hence f ∈ L(`1,F) = (`1)∨ and its kernel is S, so S is a closed subspace of `1.
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Question 6. Let (V, ⟨⋅, ⋅⟩) be an inner product space.

(a) Given a subset S of V , define the concept “the orthogonal complement S⊥ of S”.

(b) Prove that S ⊆ (S⊥)⊥.

(c) Prove that if V is a Hilbert space and W is a closed subspace of V , then (W ⊥)⊥ =W .

Solution:

(a) S⊥ = {v ∈ V ∶ ⟨v, s⟩ = 0 for all s ∈ S}.

(b) Let s ∈ S. For any x ∈ S⊥, we have

⟨s, x⟩ = ⟨x, s⟩ = 0,

so s ∈ (S⊥)⊥.

(c) We have seen above that W ⊆ (W ⊥)⊥.

Let x ∈ (W ⊥)⊥. By the Hilbert Projection Theorem, we can decompose

H =W ⊕W ⊥.

So we have x = y + z with y ∈W and z ∈W ⊥. Then

0 = ⟨x, z⟩ = ⟨y + z, z⟩ = ⟨y, z⟩ + ⟨z, z⟩ = 0 + ∥z∥2,

implying that z = 0 and x = y ∈W .
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Question 7. (a) State the Cauchy–Schwarz Inequality for inner product spaces.

(b) Let V be an inner product space. Prove that for any u ∈ V we have

∥u∥ = sup
∥v∥=1

∣⟨u, v⟩∣.

(c) Now let W be a second inner product space and let f ∈ L(V,W ) be a continuous linear
map. Prove that

∥f∥ = sup
∥v∥V =1=∥w∥W

∣⟨f(v),w⟩W ∣.

Solution:

(a) For any u, v in an inner product space V we have

∣⟨u, v⟩∣ ⩽ ∥u∥ ∥v∥.

Equality holds if and only if u and v are linearly dependent.

(b) If u = 0 then the equality is obvious.
So assume now that u ≠ 0. Applying Cauchy–Schwarz with v ∈ V such that ∥v∥ = 1, we
have

∣⟨u, v⟩∣ ⩽ ∥u∥,
so that

sup
∥v∥=1

∣⟨u, v⟩∣ ⩽ ∥u∥.

To get equality, take v = 1
∥u∥ u and see that the LHS is indeed ∥u∥.

(c) From the previous part:

∥u∥W = sup
∥w∥W =1

∣⟨u,w⟩W ∣ for all u ∈W.

Setting u = f(v) for some v ∈ V , we get

∥f(v)∥W = sup
∥w∥W =1

∣⟨f(v),w⟩W ∣ for all v ∈ V.

Therefore
∥f∥ = sup

∥v∥V =1

∥f(v)∥W = sup
∥v∥V =1=∥w∥W

∣⟨f(v),w⟩W ∣.
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Question 8. Consider the function g ∶ `2 Ð→ F given by

g(x) =
∞

∑
n=1

xn

n2
.

(a) Find y ∈ `2 such that
g(x) = ⟨x, y⟩ for all x ∈ `2.

(b) Deduce that g is linear and continuous and find its norm ∥g∥.

[Hint: You may use without proof the fact that
∞

∑
n=1

1

n4
= π4

90
.]

Solution:

(a) Setting y = (yn) with
yn =

1

n2
,

we certainly have for all x = (xn) ∈ `2:

⟨x, y⟩ =
∞

∑
n=1

xnyn =
∞

∑
n=1

xn

n2
= g(x).

We should check that y ∈ `2:

∥y∥2`2 =
∞

∑
n=1

y2n =
∞

∑
n=1

1

n4
= π4

90
.

(b) From the previous part we know that g = y∨, so certainly g is linear and continuous.
We also have

∥g∥ = ∥y∨∥ = ∥y∥`2 =
π2

3
√
10

,

as we have seen in the previous part.
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Question 9. Let (an) be a decreasing sequence of non-negative real numbers. Consider
f ∶ `2 Ð→ FN given by

f(x) = (a1x1, a2x2, . . . , anxn, . . . ).

(a) Prove that the image of f is contained in `2 and that f ∶ `2 Ð→ `2 is linear and continuous.

(b) Find the norm ∥f∥.

(c) Find the adjoint f∗ of f .

(d) How much can you relax the conditions on the sequence (an) and still retain the
statement in part (a)? Make an educated guess and describe briefly how/if the answers
to parts (b) and (c) change.

Solution:

(a) We have

∥f(x)∥2`2 =
∞

∑
n=1

a2n ∣xn∣2 ⩽ a21
∞

∑
n=1

∣xn∣2 = a21 ∥x∥2`2 ,

so if x ∈ `2 then f(x) ∈ `2.
It is straightforward that f is linear. It is clear that f is continuous from the inequality
above.

(b) We have
∥f∥ = sup

∥x∥=1

∥f(x)∥ ⩽ a1

from the previous part.
Taking x = e1 = (1,0,0, . . . ) we have ∥e1∥ = 1 and f(e1) = (a1,0,0, . . . ) so ∥f(e1)∥ = a1,
therefore ∥f∥ = a1.

(c) We have

⟨f(x), y⟩ =
∞

∑
n=1

an xn yn =
∞

∑
n=1

xn (an yn) = ⟨x, f(y)⟩,

where we used the fact that an ∈R for all n ∈N.
Therefore f∗ = f .

(d) We can take (an) to be any bounded sequence of complex numbers and (a) still holds.
In (b) we get ∥f∥ = ∥(an)∥`∞ , and in (c) we get

f∗(y) = (a1y1, a2y2, . . . , anyn, . . . ).
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