Question 1. Let (X,d) be a metric space.

(a) Define the concept “D is a dense subset of X”.

(b) Show that D ¢ X is a dense subset of X if and only if DnU # @ for all nonempty open
sets U in X.

(c) Prove that the intersection of two dense open sets U; and Us is dense.
Solution:
(a) X =D.

(b) Suppose D is dense and let U be nonempty open. Let x € U. As U is open, there exists
B,(z) cU with r>0. If z € D, we are done. Otherwise, z€ X N\ D =D~ D, so it is a
limit point of D, so there exists a € B.(x) n D such that a # =, hence a € U n D.

Conversely, suppose D n U is nonempty for any nonempty open U. Let x € X \ D.
For every r > 0, U := B,(x) is open so D n B,(z) is nonempty, and z is not in this
intersection so there must be a point distinct from z in it, hence x € D.

(C) Let U12 = U1 n UQ.
To show that U, is dense, we use the previous part and show that U, nU # @ for all
nonempty open U:

UlgﬂU:(UlﬂUQ)ﬂU:Ulﬂ (UQﬁU)

Since Us is dense and open, UsnU is nonempty and open. Since U is dense, U1 N (UgmU)
is nonempty. So U nU # @&, hence U5 is dense.
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Question 2. Let (X,d) be a metric space.

(a) Define the concept “D is a disconnected subset of X”.

(b) Prove that a subset D of X is disconnected if and only if there exists a surjective
continuous function g: D — {0,1}, where {0, 1} is given the discrete metric.

(c¢) Suppose A € X is a connected subset and {C;: i € I} is an arbitrary collection of
connected subsets of X such that An C; # @ for all i € I. Prove that

B:=Au U CZ
iel
is a connected subset of X.
Solution:

(a) There exist open subsets U and V' of D such that

D=UuV, UnV =g, U+, V+o.

(b) If such a function g exists, let U = g71(0) and V = ¢g71(1), then U # @, V # @ since g is
surjective. As {0} n{1} =@, we have UnV =@. Clearly D =U uV, and both U and V'
are open since {0} and {1} are open. This implies that D is disconnected.

For the other direction, suppose that D is disconnected and write D =U uV with U,V
as in the definition. Define g: X — {0,1} by

(x) 0 ifxeU
:[‘:
g 1 ifzeV.

This is well-defined since U n'V = @. It is continuous as ¢g71(0) = U and ¢g71(1) =V are
open. It is surjective since it takes both values 0 and 1 (as both U and V' are nonempty).
(c) Let g: B—{0,1} be an arbitrary continuous function.

Its restriction g|a: A — {0,1} cannot be surjective, since A is connected. So g|a is
constant, let’s say 0 for concreteness.

Now let i € I. The restriction g|c,: C; — {0, 1} must be constant, for the same reason
as before. But AnC; #+ @ and g is zero on A, so g must be zero on Cj.

As this holds for all 7 € I, we conclude that g is zero on B.

So there is no surjective continuous map B — {0, 1}, hence B must be connected.
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Question 3. Let (X,d) be a metric space.
(a) Define the concept “K is a compact subset of X
(b) Let C be a closed subset of a compact subset K of X. Prove that C' is compact.
(¢) Let K and L be compact subsets of X. Prove that K u L is compact.

Solution:

(a) Given any open cover of K:

there exists a finite subset {i,...,4,} € I such that

(b) Consider an arbitrary open cover of C":

Ccyu..

el
Then we have

KQX:OU(X\C)Q(UUi)U(X\O),

iel

which is an open cover of K. As K is compact, there is a finite subcover, so that

KE(GUin)u(X\C), inel,
n=1

hence
N
ccyu,.
n=1

(c) Consider an arbitrary open cover of K U L:

iel

This is also an open cover of K, so there is a finite subcover that still covers K:
N
Kc U Uin> Zn el.
n=1
Similarly, we get a finite subcover that covers L:
M
Lc U Ujm7 jm el.
m=1

Letting S = {i1,...,in} U{J1,...,7m}, we get a finite subcover that covers K u L:

KULEUUS.
seS
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Question 4. Consider the equation
(1) P -x-1=0.
(a) Show that Equation (1) must have at least one solution in the interval [1,2].

(b) Show that the function f: [1,2] — [1,2] given by

fl@)=1+z)'?
is a contraction.

(c) Show that Equation (1) has a unique solution ¢ in the interval [1,2] and describe a
sequence of real numbers that converges to &.

Solution:

(a) We can use the Intermediate Value Theorem, as 23 — x — 1 is clearly continuous. At
x=1,23-2-1=-1<0, whileat x =2, 23 -2 -1=5>0, so there must be at least one
point z in [1,2] such that 23 -z -1=0.

(b) The derivative of f is

! _1 —2/3_1 1
f(m)—3(1+a7) —3(1+$)2/3'
As x €[1,2], we have f/'(z) >0 and

L<—$ 1 < 1 <
L+z 2 (L+x)23 " 228 °

—_

1<z=>2<1+z=>

L,

so that 1
/ <=,
I{ORE

Now let z,y be such that 1 <z <y <2 and apply the Mean Value Theorem to f on
[x,y] to deduce that there exists ¢ € (x,y) such that

f(y) - f(2)

“L ) = 1 () - F@)] = 17Ol ly - al < % - 2|,
Y-

We conclude that f is a contraction.

(c) Observe that x3—xz—1 =0 is equivalent to f(x) = z, so the solutions of Equation (1) are
precisely the fixed points of f. As f is a contraction and [1,2] is complete, the Banach
Fixed Point Theorem says that there is a unique fixed point £ in [1,2]. Tt also tells us
that we can start with any x; € [1,2], for instance 21 = 1, and iteratively apply f to get
a sequence (x,) converging to &:

vi=1, = flm) =2V mg=f(m) = (14287
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Question 5. (a) Let f € L(V,IW) be a continuous linear map between normed spaces.
Prove that if U is a closed subspace of W, then its preimage f~1(U) is a closed subspace
of V.

(b) Prove that the following set of sequences
S={(an)e€1: ian=0}
n=1
is a closed subspace of the Banach space £1:
= {(an) e FN: i || < oo}.
n=1

Solution:

(a) Clear since f is linear so the inverse image of a subspace is a subspace; and f is
continuous so the inverse image of a closed set is a closed set.

(b) Consider the function f: ¢* — F given by

f((an)) = zan.

First note that this is a reasonable definition, because the infinite series on the right

hand side converges in F':

N
<D anl,
n=1

N
>a,
n=1

and the latter converges as N — oo since (a,,) € ¢!,

The function f is linear. It is also continuous, because as we have just seen:

(@) =[3 o

[ee]
<D lanl = [[(an)] o
n=1

Hence f e L(/*,F) = (¢')¥ and its kernel is S, so S is a closed subspace of 1.
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Question 6. Let (V, (,)) be an inner product space.
(a) Given a subset S of V, define the concept “the orthogonal complement S* of S”.
(b) Prove that S ¢ (Sl)L.
(c) Prove that if V' is a Hilbert space and W is a closed subspace of V| then (I/Vl)l =W.
Solution:
(a) St={veV: (v,s)=0 forall seS}.

(b) Let se S. For any z € S*, we have

(s,x)=(x,s)=0,
SO S € (SL)L.
(c) We have seen above that W' ¢ (Wi)l.
Let x € (Wl)l. By the Hilbert Projection Theorem, we can decompose
H=WeWH".
So we have x =y + z with y € W and z € Wt. Then
0=(2,2) = (y+2,2) = (y,2) +(2,2) =0+ | 2],

implying that z =0 and z =y e V.
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Question 7. (a) State the Cauchy—Schwarz Inequality for inner product spaces.

(b) Let V be an inner product space. Prove that for any u € V' we have

Ju] = sup [(u, v}
Jol-1

(c) Now let W be a second inner product space and let f e L(V,WW) be a continuous linear
map. Prove that

Ifl= sup  [(f(v),w)wl

lvlv=1=]wlw

Solution:
(a) For any u,v in an inner product space V' we have
u, 03] < ] o]
Equality holds if and only if v and v are linearly dependent.

(b) If u =0 then the equality is obvious.

So assume now that u # 0. Applying Cauchy—Schwarz with v € V' such that |v| =1, we
have
[(u, 0)] < Jul,

so that

sup [{u, v)| < Jul.
fol=1

To get equality, take v = m u and see that the LHS is indeed |u]|.
(c) From the previous part:

|ulw = sup |{u,w)w| for all we V.
lw]w=1

Setting u = f(v) for some v € V', we get

[f(@)lw = sup [(f(v),w)w| forallveV.

[wlw=1
Therefore
Ifl= sup |f(0)w=sup [(f(v),w)w|
[vlv=1 [vllv=1=|w|w
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Question 8. Consider the function ¢: (2 — F given by
[ee] l,n
r)=y —.
g9(z) n§=1: —

(a) Find y € £? such that
g(z) = {z,y) for all x € (2.

(b) Deduce that g is linear and continuous and find its norm |g|
4

[Hint: You may use without proof the fact that Z prie g_[)]
n=1
Solution:
(a) Setting y = (y,,) with
1

we certainly have for all z = (x,,) € (%

anyn = Z ; = g(ZL“)

n= 1
We should check that y € ¢2:
ol = Sa2= 3 L= T
. =" n=1 nt 90

(b) From the previous part we know that g = yV, so certainly g is linear and continuous

We also have
2

lgll =Ty = lyle = Vil

as we have seen in the previous part.
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Question 9. Let (a,) be a decreasing sequence of non-negative real numbers. Consider
f: 0?2 — FN given by
flx)= (alxl,agajg, ey ATy, )

a) Prove that the image of f is contained in £? and that f: 2 — ¢ is linear and continuous.

(a)

(b) Find the norm || f].

(c¢) Find the adjoint f* of f.
)

(d) How much can you relax the conditions on the sequence (a,) and still retain the
statement in part (a)? Make an educated guess and describe briefly how/if the answers
to parts (b) and (c¢) change.

Solution:

(a) We have

o0 (o]
[ (@)% = 2 ap |eal* <a? ) |zal* = af 2],
n=1 n=1

so if z € £2 then f(x) € (2.
It is straightforward that f is linear. It is clear that f is continuous from the inequality

above.

(b) We have
171 = sup |f(2)] <a

from the previous part.

Taking x = e; = (1,0,0,...) we have |e;| =1 and f(e1) = (a1,0,0,...) so | f(e1)| = a1,
therefore || f| = a;.

(c) We have

(f(x)ay) = ianxnyn = ixn (anyn) = (x,f(y)),

where we used the fact that a,, € R for all n € N.

Therefore f* = f.

(d) We can take (a,) to be any bounded sequence of complex numbers and (a) still holds.
In (b) we get | f| = [(an)|e=, and in (c) we get

[ (y) = (aly1762y2, e Yy - - - )
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