Question 1. For each $n \in \mathbb{N}$ define $f_n \colon [0,1] \longrightarrow \mathbb{R}$ by

$$f_n(x) = \frac{1 - x^n}{1 + x^n}.$$

- (a) Show that f_n is continuous and bounded for all $n \in \mathbf{N}$.
- (b) Define the concept: the sequence (f_n) converges pointwise to $f: [0,1] \longrightarrow \mathbf{R}$. Find the pointwise limit f of the sequence (f_n) .
- (c) Define the concept: the sequence (f_n) converges uniformly to $f: [0,1] \longrightarrow \mathbf{R}$. Determine whether the sequence (f_n) converges uniformly to the pointwise limit f from part (b).

- **Question 2.** (a) Define the notion of adjoint map of a continuous linear map $f: X \longrightarrow Y$ between Hilbert spaces.
 - (b) Let $f: X \longrightarrow Y$ be a continuous linear map between Hilbert spaces. Prove that

$$\ker(f^*) = (\operatorname{im} f)^{\perp}.$$

(c) Give an example of a Hilbert space H and a continuous linear map $f\colon H\longrightarrow H$ such that

$$H = \operatorname{im} f \oplus \ker f$$

and neither im f nor ker f is the zero space.

Question 3. Let $f: X \longrightarrow Y$ be a continuous function between metric spaces.

- (a) Define the concept: f is uniformly continuous.
- (b) Prove that if X is compact, then f is uniformly continuous.
- (c) Prove that if $f: X \longrightarrow Y$ is uniformly continuous and (x_n) is a Cauchy sequence in X, then $(f(x_n))$ is a Cauchy sequence in Y.
- (d) Give an example of a continuous function $f: X \longrightarrow Y$ that is not uniformly continuous.

Question 4. Consider the Hilbert space ℓ^2 of square-summable sequences $a = (a_1, a_2, ...)$ and let $\{e_1, e_2, ...\}$ with $e_1 = (1, 0, 0, ...)$, $e_2 = (0, 1, 0, ...)$, ..., be the standard Schauder basis for ℓ^2 .

Let $f: \ell^2 \longrightarrow \ell^2$ be a linear transformation.

- (a) Show that if f is a continuous linear map then the sequence $(||f(e_n)||)$ is bounded.
- (b) Writing

$$f(e_n) = \sum_{m=1}^{\infty} c_{nm} e_m,$$

give a condition on the coefficients c_{nm} that is necessary and sufficient for f to be self-adjoint.

Question 5. Let X be a topological space and let K, L be two subsets of X.

- (a) Define the concepts: (i) X is Hausdorff; (ii) K is compact.
- (b) Prove that if X is a Hausdorff topological space and K is a compact subset of X, then K is closed in X.
- (c) Prove that if X is a compact topological space and $K \subseteq X$ is a closed subset, then K is compact.
- (d) Suppose K and L are compact subsets of a Hausdorff topological space X. Prove that the intersection $K \cap L$ is compact.

Question 6. Recall that $C_0([0,1], \mathbf{R})$ denotes the space of (bounded) continuous functions $f: [0,1] \longrightarrow \mathbf{R}$.

- (a) State the Weierstrass Approximation Theorem for $C_0([0,1], \mathbf{R})$ with the uniform norm.
- (b) Suppose $f \in C_0([0,1], \mathbf{R})$ has the property that

(1)
$$\int_0^1 f(x) x^n dx = 0 \quad \text{for all } n = 0, 1, 2, \dots$$

Prove that f is the constant function 0 on [0,1].

(c) Give an explicit **discontinuous** function $f: [0,1] \longrightarrow \mathbf{R}$ that satisfies equation (1) but is (obviously) not the constant function 0 on [0,1].

Question 7. In this question, we endow the product $S \times T$ of any two metric spaces S and T with its Manhattan metric:

$$d((s_1,t_1),(s_2,t_2)) = d_S(s_1,s_2) + d_T(t_1,t_2).$$

- (a) Prove that if S and T are complete metric spaces, then the metric space $S\times T$ is complete.
- (b) Define the concept of completion of a metric space X.
- (c) Let X, Y be metric spaces and fix completions (\widehat{X}, ι_X) of X and (\widehat{Y}, ι_Y) of Y. Prove that $(\widehat{X} \times \widehat{Y}, \iota_X \times \iota_Y)$ is a completion of $X \times Y$.

Question 8. (a) Let X be a metric space.

Define the concepts: (i) X is **complete**; (ii) $f: X \longrightarrow X$ is a **contraction**; (iii) $x \in X$ is a **fixed point** of $f: X \longrightarrow X$.

Give the complete statement of the Banach Fixed Point Theorem.

- (b) Consider the function $f: \mathbf{R} \to \mathbf{R}$ given by $f(x) = x^2$. Find a positive real number a > 0 such that f satisfies the **hypotheses** of the Banach Fixed Point Theorem on the interval [-a, a].
 - Give your best guess for how large you can make a (without proof).
- (c) What is the largest interval on which the **conclusion** of the Banach Fixed Point Theorem holds for the same function $f(x) = x^2$?