Question 1. For each $n \in \mathbb{N}$ define $f_n : [0,1] \longrightarrow \mathbb{R}$ by

$$f_n(x) = \frac{1 - x^n}{1 + x^n}.$$

- (a) Show that f_n is continuous and bounded for all $n \in \mathbb{N}$.
- (b) Define the concept: the sequence (f_n) converges pointwise to $f: [0,1] \to \mathbf{R}$. Find the pointwise limit f of the sequence (f_n) .
- (c) Define the concept: the sequence (f_n) converges uniformly to $f: [0,1] \longrightarrow \mathbf{R}$. Determine whether the sequence (f_n) converges uniformly to the pointwise limit f from part (b).

Solution:

(a) Both $1 - x^n$ and $1 + x^n$ are continuous, and $1 + x^n$ is nonzero on [0, 1], so the quotient f_n is continuous on [0, 1].

It is then clear that f_n is bounded, as it is continuous on the compact domain [0,1]; or we can bound it explicitly: for $0 \le x \le 1$ we have $0 \le 1 - x^n \le 1$ and $1 \le 1 + x^n \le 2$, so

$$0 \leqslant \frac{1 - x^n}{1 + x^n} \leqslant 1.$$

(b) The sequence (f_n) converges pointwise to $f: [0,1] \to \mathbf{R}$ if for every $x \in [0,1]$ the sequence of real numbers $(f_n(x))$ converges to the real number f(x).

Alternative: for every $x \in [0,1]$ and every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have

$$|f_n(x) - f(x)| < \varepsilon.$$

Note that at x = 1 we have $f_n(1) = \frac{0}{2} = 0$, so f(1) = 0.

But if x < 1 then $(x^n) \longrightarrow 0$ as $n \longrightarrow \infty$, so that

$$f_n(x) = \frac{1 - x^n}{1 + x^n} \longrightarrow \frac{1}{1} = 1,$$

and so f(x) = 1. In summary:

$$f(x) = \begin{cases} 1 & \text{if } 0 \leqslant x < 1 \\ 0 & \text{if } x = 1. \end{cases}$$

(c) The sequence (f_n) converges uniformly to $f: [0,1] \longrightarrow \mathbf{R}$ if the sequence of real numbers $(\|f_n - f\|_{\infty})$ converges to 0, where for any continuous function $g: [0,1] \longrightarrow \mathbf{R}$ we have

$$||g||_{\infty} = \sup_{x \in [0,1]} |g(x)|.$$

Equivalently: for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have

$$|f_n(x) - f(x)| < \varepsilon$$
 for all $x \in [0, 1]$.

As the f_n are all continuous, if $(f_n) \longrightarrow f$ uniformly then f would be continuous. Since that is not the case, the convergence is not uniform.

- **Question 2.** (a) Define the notion of adjoint map of a continuous linear map $f: X \longrightarrow Y$ between Hilbert spaces.
 - (b) Let $f: X \longrightarrow Y$ be a continuous linear map between Hilbert spaces. Prove that

$$\ker(f^*) = (\operatorname{im} f)^{\perp}.$$

(c) Give an example of a Hilbert space H and a continuous linear map $f\colon H\longrightarrow H$ such that

$$H = \operatorname{im} f \oplus \ker f$$

and neither im f nor ker f is the zero space.

Solution:

(a) The adjoint $f^*: Y \longrightarrow X$ is the unique element of L(Y,X) with the property that

$$\langle f(x), y \rangle = \langle x, f^*(y) \rangle$$
 for all $x \in X, y \in Y$.

Alternative: let $\Phi_X \colon X \longrightarrow X^{\vee}$ and $\Phi_Y \colon Y \longrightarrow Y^{\vee}$ be the conjugate-linear isometries given by the Riesz Representation Theorem and let $f^{\vee} \colon Y^{\vee} \longrightarrow X^{\vee}$ be the dual linear transformation of f, then the adjoint $f^* \colon Y \longrightarrow X$ is defined by

$$f^* = \Phi_X^{-1} \circ f^\vee \circ \Phi_Y^{-1}.$$

(b) We have

$$y \in (\operatorname{im} f)^{\perp} \iff y \perp f(x) \quad \text{for all } x \in X$$
 $\iff \langle f(x), y \rangle = 0 \quad \text{for all } x \in X$
 $\iff \langle x, f^{*}(y) \rangle = 0 \quad \text{for all } x \in X$
 $\iff f^{*}(y) = 0$
 $\iff y \in \ker f^{*}.$

(c) Let $H = \mathbb{C}^2$ and $f : \mathbb{C}^2 \longrightarrow \mathbb{C}^2$ given by multiplication by the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. The claim follows from the Hilbert Projection Theorem since $H = \operatorname{im} f \oplus (\operatorname{im} f)^{\perp} = \operatorname{im} f \oplus \ker f^* = \operatorname{im} f \oplus \ker f$ as $f = f^*$ is self-adjoint.

Or we can check directly that im $f = \mathbf{C}e_1$ and $\ker f = \mathbf{C}e_2$, hence the claim.

Question 3. Let $f: X \longrightarrow Y$ be a continuous function between metric spaces.

- (a) Define the concept: f is uniformly continuous.
- (b) Prove that if X is compact, then f is uniformly continuous.
- (c) Prove that if $f: X \longrightarrow Y$ is uniformly continuous and (x_n) is a Cauchy sequence in X, then $(f(x_n))$ is a Cauchy sequence in Y.
- (d) Give an example of a continuous function $f: X \longrightarrow Y$ that is not uniformly continuous.

Solution:

(a) We say that $f: X \longrightarrow Y$ is uniformly continuous if for any $\varepsilon > 0$ there exists $\delta > 0$ such that

if
$$d_X(x,x') < \delta$$
 then $d_Y(f(x),f(x')) < \varepsilon$.

(b) Let $\varepsilon > 0$.

Given $x \in X$, there exists $\delta(x) > 0$ such that $f(\mathbf{B}_{\delta(x)}(x)) \subseteq \mathbf{B}_{\varepsilon/2}(f(x))$. We get an open cover of X:

$$X \subseteq \bigcup_{x \in X} \mathbf{B}_{\delta(x)/2}(x),$$

which therefore has a finite subcover

$$X \subseteq \bigcup_{n=1}^{N} \mathbf{B}_{\delta(x_n)/2}(x_n).$$

Let $\delta = \min \{\delta(x_n)/2 \colon n = 1, \dots, N\}.$

Suppose $s, t \in X$ are such that $d_X(s,t) < \delta$. We have $s \in \mathbf{B}_{\delta(x_n)/2}(x_n)$ for some $n \in \{1,\ldots,N\}$. I claim that $t \in \mathbf{B}_{\delta(x_n)}(x_n)$:

$$d_X(t,x_n) \leq d_X(t,s) + d_X(s,x_n) < \delta + \frac{\delta(x_n)}{2} \leq \delta(x_n).$$

Therefore $f(s), f(t) \in \mathbf{B}_{\varepsilon/2}(f(x_n))$, hence $d_Y(f(s), f(t)) < \varepsilon$.

(c) For all $n \in \mathbb{N}$, set $y_n = f(x_n)$.

Let $\varepsilon > 0$. As f is uniformly continuous, there exists $\delta > 0$ such that for all $x, x' \in X$, if $d_X(x, x') < \delta$ then $d_Y(f(x), f(x')) < \varepsilon$.

But (x_n) is Cauchy in X, so given this δ there exists $N \in \mathbb{N}$ such that $d_X(x_n, x_m) < \delta$ for all $n, m \ge N$. Therefore $d_Y(y_n, y_m) < \varepsilon$ for all $n, m \ge N$.

(d) Take $f: (0,1) \longrightarrow \mathbf{R}$ given by $f(x) = \frac{1}{x}$, then f is continuous on (0,1), but it maps the Cauchy sequence (1/n) to the sequence (n), which is not Cauchy.

Question 4. Consider the Hilbert space ℓ^2 of square-summable sequences $a = (a_1, a_2, ...)$ and let $\{e_1, e_2, ...\}$ with $e_1 = (1, 0, 0, ...)$, $e_2 = (0, 1, 0, ...)$, ..., be the standard Schauder basis for ℓ^2 .

Let $f: \ell^2 \longrightarrow \ell^2$ be a linear transformation.

- (a) Show that if f is a continuous linear map then the sequence $(||f(e_n)||)$ is bounded.
- (b) Writing

$$f(e_n) = \sum_{m=1}^{\infty} c_{nm} e_m,$$

give a condition on the coefficients c_{nm} that is necessary and sufficient for f to be self-adjoint.

Solution:

(a) We know that a linear map f is continuous if and only if it is Lipschitz, that is there exists C > 0 such that

$$||f(v)|| \le C||v||$$
 for all v .

In particular, if f is continuous then for all $n \in \mathbb{N}$ we have

$$||f(e_n)|| \le C||e_n|| = C,$$

so $(||f(e_n)||)$ is a bounded sequence in **R**.

(b) Suppose f is self-adjoint, then

$$\langle f(e_n), e_k \rangle = \langle e_n, f(e_k) \rangle$$
 for all $k, n \in \mathbb{N}$. (*)

The left hand side is

$$\langle f(e_n), e_k \rangle = \left(\sum_{m=1}^{\infty} c_{nm} e_m, e_k \right) = \sum_{m=1}^{\infty} c_{nm} \langle e_m, e_k \rangle = c_{nk},$$

while the right hand side is

$$\langle e_n, f(e_k) \rangle = \left\langle e_n, \sum_{m=1}^{\infty} c_{km} e_m \right\rangle = \sum_{m=1}^{\infty} \overline{c}_{km} \langle e_n, e_m \rangle = \overline{c}_{kn}.$$

We conclude that (*) is equivalent to:

$$c_{nk} = \overline{c}_{kn}$$
 for all $k, n \in \mathbb{N}$.

If (*) holds, it is easy to see that

$$\langle f(v), w \rangle = \left(f\left(\sum_{n} a_{n} e_{n}\right), \sum_{k} b_{k} e_{k} \right)$$

$$= \sum_{n,k} a_{n} \overline{b}_{k} \langle f(e_{n}), e_{k} \rangle$$

$$= \sum_{n,k} a_{n} \overline{b}_{k} \langle e_{n}, f(e_{k}) \rangle$$

$$= \left(\sum_{n} a_{n} e_{n}, f\left(\sum_{k} b_{k} e_{k}\right)\right)$$

$$= \langle v, f(w) \rangle.$$

Question 5. Let X be a topological space and let K, L be two subsets of X.

- (a) Define the concepts: (i) X is Hausdorff; (ii) K is compact.
- (b) Prove that if X is a Hausdorff topological space and K is a compact subset of X, then K is closed in X.
- (c) Prove that if X is a compact topological space and $K \subseteq X$ is a closed subset, then K is compact.
- (d) Suppose K and L are compact subsets of a Hausdorff topological space X. Prove that the intersection $K \cap L$ is compact.

Solution:

(a) We say that X is Hausdorff if for all $x, y \in X$ such that $x \neq y$, there exist open neighbourhoods U of x and V of y such that $U \cap V = \emptyset$.

We say that K is compact if for any open cover $\{U_i : i \in I\}$ of K, that is a collection of open subsets U_i of X such that

$$K\subseteq\bigcup_{i\in I}U_i,$$

there exists a finite subcover, that is a finite subset $\{i_1,\ldots,i_n\}\subseteq I$ such that

$$K \subseteq U_{i_1} \cup \cdots \cup U_{i_n}$$
.

(b) We show that $X \setminus K$ is open. Let $x \in X \setminus K$. For each $k \in K$, since $k \neq x$ there exist open neighbourhoods U_k of k and k0 of k2 such that k0 of k2. Putting it together we get an open cover

$$K \subseteq \bigcup_{k \in K} U_k$$
,

which by compactness has a finite subcover

$$K \subseteq U_{k_1} \cup \cdots \cup U_{k_n} =: U.$$

Consider

$$V := V_{k_1} \cap \cdots \cap V_{k_m}$$

which is an open neighbourhood of x. We have $U \cap V = \emptyset$, therefore $V \subseteq X \setminus U \subseteq X \setminus K$ is an open neighbourhood of x contained in $X \setminus K$. Therefore $X \setminus K$ is open.

(c) Consider an open cover of K:

$$K \subseteq \bigcup_{i \in I} U_i$$
.

We can turn this into an open cover of X:

$$X = (X \setminus K) \cup K \subseteq (X \setminus K) \cup \bigcup_{i \in I} U_i.$$

As X is compact, there is a finite subcover

$$X \subseteq (X \setminus K) \cup U_{i_1} \cup \cdots \cup U_{i_n}$$
.

As $K \subseteq X$ but $K \cap (X \setminus K) = \emptyset$, we must have

$$K \subseteq U_{i_1} \cup \cdots \cup U_{i_n}$$
.

(d) By part (b), K and L are closed subsets of X. Therefore, $K \cap L$ is a closed subset of K. But K is compact, so by part (c), its closed subset $K \cap L$ is also compact.

Question 6. Recall that $C_0([0,1], \mathbf{R})$ denotes the space of (bounded) continuous functions $f: [0,1] \longrightarrow \mathbf{R}$.

- (a) State the Weierstrass Approximation Theorem for $C_0([0,1], \mathbf{R})$ with the uniform norm.
- (b) Suppose $f \in C_0([0,1], \mathbf{R})$ has the property that

(1)
$$\int_0^1 f(x) x^n dx = 0 \quad \text{for all } n = 0, 1, 2, \dots$$

Prove that f is the constant function 0 on [0,1].

(c) Give an explicit **discontinuous** function $f: [0,1] \longrightarrow \mathbf{R}$ that satisfies equation (1) but is (obviously) not the constant function 0 on [0,1].

Solution:

- (a) Let \mathcal{A} be the subset of $C_0([0,1],\mathbf{R})$ consisting of polynomial functions. Then \mathcal{A} is dense in $C_0([0,1],\mathbf{R})$ with respect to the uniform norm.
- (b) Let M be an upper bound for |f| on [0,1]. If M = 0, we are done. So we may assume now that M > 0.

Let $\varepsilon > 0$. By the Weierstrass Approximation Theorem there exists $p \in \mathcal{A}$ such that

$$|f(x) - p(x)| < \frac{\varepsilon}{M}$$
 for all $x \in [0, 1]$.

Writing $p(x) = \sum_{n=0}^{d} a_n x^n$ with $a_n \in \mathbf{R}$, we have by the linearity of the integral and by the hypothesis in the question:

$$\int_0^1 f(x)p(x) \, dx = \sum_{n=0}^d a_n \int_0^1 f(x) \, x^n \, dx = 0.$$

Then

$$\left| \int_0^1 f(x)^2 dx \right| = \left| \int_0^1 f(x) (f(x) - p(x)) dx \right|$$

$$\leq \int_0^1 |f(x)| |f(x) - p(x)| dx \leq M \frac{\varepsilon}{M} = \varepsilon.$$

Since this holds for all $\varepsilon > 0$, we conclude that the integral of the non-negative continuous function $f(x)^2$ on [0,1] is zero, hence $f(x)^2$ is the constant function 0 on [0,1], hence so is f(x).

(c) There are many options here, but we can take for instance

$$f(x) = \begin{cases} 0 & \text{if } x \neq \frac{1}{2} \\ 1 & \text{if } x = \frac{1}{2}. \end{cases}$$

Question 7. In this question, we endow the product $S \times T$ of any two metric spaces S and T with its Manhattan metric:

$$d((s_1,t_1),(s_2,t_2)) = d_S(s_1,s_2) + d_T(t_1,t_2).$$

- (a) Prove that if S and T are complete metric spaces, then the metric space $S \times T$ is complete.
- (b) Define the concept of completion of a metric space X.
- (c) Let X, Y be metric spaces and fix completions (\widehat{X}, ι_X) of X and (\widehat{Y}, ι_Y) of Y. Prove that $(\widehat{X} \times \widehat{Y}, \iota_X \times \iota_Y)$ is a completion of $X \times Y$.

Solution:

(a) Let (s_n, t_n) be a Cauchy sequence in $S \times T$. I claim that (s_n) is Cauchy in S and (t_n) is Cauchy in T.

Let $\varepsilon > 0$. There exists $N \in \mathbb{N}$ such that for all $m, n \ge N$ we have

$$d_S(s_n, s_m) \leq d((s_n, t_n), (s_m, t_m)) < \varepsilon,$$

so (s_n) is a Cauchy sequence in S. Since S is complete, (s_n) converges to some $s \in S$. Similarly, (t_n) is a Cauchy sequence in T, which is complete, so (t_n) converges to some $t \in T$.

I claim that (s_n, t_n) converges to (s, t). Let $\varepsilon > 0$. There exists $N_1 \in \mathbb{N}$ such that for all $n \ge N_1$ we have $d_S(s_n, s) < \varepsilon/2$. There exists $N_2 \in \mathbb{N}$ such that for all $n \ge N_2$ we have $d_T(t_n, t) < \varepsilon/2$. Let $N = \max\{N_1, N_2\}$, then for all $n \ge N$ we have

$$d((s_n,t_n),(s,t)) = d_S(s_n,s) + d_T(t_n,t) < \varepsilon.$$

- (b) A completion of X is a pair (\widehat{X}, ι_X) where \widehat{X} is a complete metric space and $\iota_X \colon X \longrightarrow \widehat{X}$ is a distance-preserving map such that $\iota_X(X)$ is dense in \widehat{X} .
- (c) First, $\widehat{X} \times \widehat{Y}$ is complete since both \widehat{X} and \widehat{Y} are complete. Let \widehat{d} denote the Manhattan metric on $\widehat{X} \times \widehat{Y}$. We show that $\iota := \iota_X \times \iota_Y$ is distance-preserving:

$$\widehat{d}(\iota(x_1, y_1), \iota(x_2, y_2)) = \widehat{d}_X(\iota_X(x_1), \iota_X(x_2)) + \widehat{d}_Y(\iota_Y(y_1), \iota_Y(y_2))
= d_X(x_1, x_2) + d_Y(y_1, y_2)
= d((x_1, y_1), (x_2, y_2)).$$

To show that the image of ι is dense in $\widehat{X} \times \widehat{Y}$, let $(\widehat{x}, \widehat{y}) \in \widehat{X} \times \widehat{Y}$ and let $\varepsilon > 0$.

Since $\iota_X(X)$ is dense in \widehat{X} , there exists $x \in X$ such that $\widehat{d}_X(\iota_X(x), \widehat{x}) < \varepsilon/2$. Similarly, there exists $y \in Y$ such that $\widehat{d}_Y(\iota_Y(y), \widehat{y}) < \varepsilon/2$. Then

$$\widehat{d}\big(\iota(x,y),(\widehat{x},\widehat{y})\big)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

Question 8. (a) Let X be a metric space.

Define the concepts: (i) X is **complete**; (ii) $f: X \longrightarrow X$ is a **contraction**; (iii) $x \in X$ is a **fixed point** of $f: X \longrightarrow X$.

Give the complete statement of the Banach Fixed Point Theorem.

(b) Consider the function $f: \mathbf{R} \longrightarrow \mathbf{R}$ given by $f(x) = x^2$. Find a positive real number a > 0 such that f satisfies the **hypotheses** of the Banach Fixed Point Theorem on the interval [-a, a].

Give your best guess for how large you can make a (without proof).

(c) What is the largest interval on which the **conclusion** of the Banach Fixed Point Theorem holds for the same function $f(x) = x^2$?

Solution:

(a) A metric space X is complete if every Cauchy sequence in X has a limit in X.

A map $f: X \longrightarrow X$ is a contraction if there exists $C \in [0,1)$ such that

$$d(f(x_1), f(x_2)) \le Cd(x_1, x_2)$$
 for all $x_1, x_2 \in X$.

A point $x \in X$ is a fixed point of f if f(x) = x.

The Banach Fixed Point Theorem: Let X be a nonempty complete metric space and let $f: X \longrightarrow X$ be a contraction. Then f has a unique fixed point in X. Moreover, for any choice of $x_1 \in X$, the sequence (x_n) defined by $x_{n+1} = f(x_n)$ converges to the fixed point x.

(b) Let $0 < a < \frac{1}{2}$ and let $x_1 \neq x_2 \in [-a, a]$; wlog $x_1 < x_2$. By the Mean Value Theorem applied to $f(x) = x^2$ on the interval $[x_1, x_2]$, there exists $\xi \in (x_1, x_2)$ such that

$$|f(x_2) - f(x_1)| = |f'(\xi)| |x_2 - x_1| = 2|\xi| |x_2 - x_1| < 2a |x_2 - x_1|$$

 $\leq C |x_2 - x_1|$

if we set C = 2a < 1. This tells us that f is a contraction for any $0 < a < \frac{1}{2}$. It is easy to check that f also maps [-a, a] to [-a, a] under the same condition, so the Banach Fixed Point Theorem can be invoked. In fact, for the function $f(x) = x^2$ we have

$$\sup_{x_1 \neq x_2 \in [-a,a]} \left| \frac{f(x_1) - f(x_2)}{x_1 - x_2} \right| = \sup_{x_1 \neq x_2 \in [-a,a]} |x_1 + x_2| = 2a,$$

so the smallest constant C we can take on the interval [-a, a] is 2a, therefore the constraint $C \in [0, 1)$ forces $a < \frac{1}{2}$.

(c) I claim that the largest interval is (-1,1).

The equation $x = f(x) = x^2$ has two solutions: x = 0 and x = 1, so the uniqueness part of the conclusion gives us two possible largest intervals: $(-\infty, 1)$ or $(0, \infty)$. However, if $|x_1| \ge 1$ then the iteration $x_{n+1} = f(x_n)$ gives a sequence whose terms in absolute value $|x_1|^{2^n}$ go to infinity, so the sequence does not converge, which imposes the constraint $|x_1| < 1$. Intersecting this with $(-\infty, 1)$ gives (-1, 1), whereas intersecting it with $(0, \infty)$ gives (0, 1), which does not contain one of the solutions anymore.