
Question 1. For each n ∈N define fn ∶ [0,1] Ð→R by

fn(x) =
1 − xn

1 + xn
.

(a) Show that fn is continuous and bounded for all n ∈N.

(b) Define the concept: the sequence (fn) converges pointwise to f ∶ [0,1] Ð→R.

Find the pointwise limit f of the sequence (fn).

(c) Define the concept: the sequence (fn) converges uniformly to f ∶ [0,1] Ð→R.

Determine whether the sequence (fn) converges uniformly to the pointwise limit f from
part (b).

Solution:

(a) Both 1 − xn and 1 + xn are continuous, and 1 + xn is nonzero on [0,1], so the quotient
fn is continuous on [0,1].
It is then clear that fn is bounded, as it is continuous on the compact domain [0,1]; or
we can bound it explicitly: for 0 ⩽ x ⩽ 1 we have 0 ⩽ 1 − xn ⩽ 1 and 1 ⩽ 1 + xn ⩽ 2, so

0 ⩽ 1 − xn

1 + xn
⩽ 1.

(b) The sequence (fn) converges pointwise to f ∶ [0,1] Ð→ R if for every x ∈ [0,1] the
sequence of real numbers (fn(x)) converges to the real number f(x).
Alternative: for every x ∈ [0,1] and every ε > 0 there exists N ∈ N such that for all
n ⩾ N we have

∣fn(x) − f(x)∣ < ε.

Note that at x = 1 we have fn(1) = 0
2 = 0, so f(1) = 0.

But if x < 1 then (xn) Ð→ 0 as nÐ→∞, so that

fn(x) =
1 − xn

1 + xn
Ð→ 1

1
= 1,

and so f(x) = 1. In summary:

f(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if 0 ⩽ x < 1
0 if x = 1.

(c) The sequence (fn) converges uniformly to f ∶ [0,1] Ð→R if the sequence of real numbers
(∥fn − f∥∞) converges to 0, where for any continuous function g ∶ [0,1] Ð→R we have

∥g∥∞ = sup
x∈[0,1]

∣g(x)∣.

Equivalently: for every ε > 0 there exists N ∈N such that for all n ⩾ N we have

∣fn(x) − f(x)∣ < ε for all x ∈ [0,1].

As the fn are all continuous, if (fn) Ð→ f uniformly then f would be continuous. Since
that is not the case, the convergence is not uniform.
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Question 2. (a) Define the notion of adjoint map of a continuous linear map f ∶ X Ð→ Y
between Hilbert spaces.

(b) Let f ∶ X Ð→ Y be a continuous linear map between Hilbert spaces. Prove that

ker (f∗) = ( im f)⊥.

(c) Give an example of a Hilbert space H and a continuous linear map f ∶ H Ð→H such
that

H = im f ⊕ kerf

and neither im f nor ker f is the zero space.
Solution:

(a) The adjoint f∗ ∶ Y Ð→X is the unique element of L(Y,X) with the property that

⟨f(x), y⟩ = ⟨x, f∗(y)⟩ for all x ∈X,y ∈ Y.

Alternative: let ΦX ∶ X Ð→ X∨ and ΦY ∶ Y Ð→ Y ∨ be the conjugate-linear isometries
given by the Riesz Representation Theorem and let f∨ ∶ Y ∨ Ð→X∨ be the dual linear
transformation of f , then the adjoint f∗ ∶ Y Ð→X is defined by

f∗ = Φ−1X ○ f∨ ○Φ−1Y .

(b) We have

y ∈ ( im f)⊥ ⇐⇒ y ⊥ f(x) for all x ∈X
⇐⇒ ⟨f(x), y⟩ = 0 for all x ∈X
⇐⇒ ⟨x, f∗(y)⟩ = 0 for all x ∈X
⇐⇒ f∗(y) = 0
⇐⇒ y ∈ ker f∗.

(c) Let H =C2 and f ∶ C2 Ð→C2 given by multiplication by the matrix [1 0
0 0
]. The claim

follows from the Hilbert Projection Theorem since H = im f ⊕ ( im f)⊥ = im f ⊕ ker f∗ =
im f ⊕ kerf as f = f∗ is self-adjoint.
Or we can check directly that im f =Ce1 and ker f =Ce2, hence the claim.
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Question 3. Let f ∶ X Ð→ Y be a continuous function between metric spaces.

(a) Define the concept: f is uniformly continuous.

(b) Prove that if X is compact, then f is uniformly continuous.

(c) Prove that if f ∶ X Ð→ Y is uniformly continuous and (xn) is a Cauchy sequence in X,
then (f(xn)) is a Cauchy sequence in Y .

(d) Give an example of a continuous function f ∶ X Ð→ Y that is not uniformly continuous.

Solution:

(a) We say that f ∶ X Ð→ Y is uniformly continuous if for any ε > 0 there exists δ > 0 such
that

if dX(x,x′) < δ then dY (f(x), f(x′)) < ε.

(b) Let ε > 0.
Given x ∈X, there exists δ(x) > 0 such that f(Bδ(x)(x)) ⊆ Bε/2(f(x)). We get an open
cover of X:

X ⊆ ⋃
x∈X

Bδ(x)/2(x),

which therefore has a finite subcover

X ⊆
N

⋃
n=1

Bδ(xn)/2(xn).

Let δ =min{δ(xn)/2 ∶ n = 1, . . . ,N}.
Suppose s, t ∈ X are such that dX(s, t) < δ. We have s ∈ Bδ(xn)/2(xn) for some n ∈
{1, . . . ,N}. I claim that t ∈ Bδ(xn)(xn):

dX(t, xn) ⩽ dX(t, s) + dX(s, xn) < δ +
δ(xn)
2
⩽ δ(xn).

Therefore f(s), f(t) ∈ Bε/2(f(xn)), hence dY (f(s), f(t)) < ε.

(c) For all n ∈N, set yn = f(xn).
Let ε > 0. As f is uniformly continuous, there exists δ > 0 such that for all x,x′ ∈X, if
dX(x,x′) < δ then dY (f(x), f(x′)) < ε.
But (xn) is Cauchy in X, so given this δ there exists N ∈N such that dX(xn, xm) < δ
for all n,m ⩾ N . Therefore dY (yn, ym) < ε for all n,m ⩾ N .

(d) Take f ∶ (0,1) Ð→R given by f(x) = 1
x , then f is continuous on (0,1), but it maps the

Cauchy sequence (1/n) to the sequence (n), which is not Cauchy.
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Question 4. Consider the Hilbert space `2 of square-summable sequences a = (a1, a2, . . . )
and let {e1, e2, . . .} with e1 = (1,0,0, . . . ), e2 = (0,1,0, . . . ), …, be the standard Schauder basis
for `2.

Let f ∶ `2 Ð→ `2 be a linear transformation.

(a) Show that if f is a continuous linear map then the sequence (∥f(en)∥) is bounded.

(b) Writing

f(en) =
∞

∑
m=1

cnm em,

give a condition on the coefficients cnm that is necessary and sufficient for f to be
self-adjoint.

Solution:

(a) We know that a linear map f is continuous if and only if it is Lipschitz, that is there
exists C > 0 such that

∥f(v)∥ ⩽ C∥v∥ for all v.
In particular, if f is continuous then for all n ∈N we have

∥f(en)∥ ⩽ C∥en∥ = C,

so (∥f(en)∥) is a bounded sequence in R.

(b) Suppose f is self-adjoint, then

⟨f(en), ek⟩ = ⟨en, f(ek)⟩ for all k,n ∈N. (∗)

The left hand side is

⟨f(en), ek⟩ = ⟨
∞

∑
m=1

cnmem, ek⟩ =
∞

∑
m=1

cnm⟨em, ek⟩ = cnk,

while the right hand side is

⟨en, f(ek)⟩ = ⟨en,
∞

∑
m=1

ckmem⟩ =
∞

∑
m=1

ckm⟨en, em⟩ = ckn.

We conclude that (∗) is equivalent to:

cnk = ckn for all k,n ∈N.

If (∗) holds, it is easy to see that

⟨f(v),w⟩ = ⟨f (∑
n

anen) ,∑
k

bkek⟩

= ∑
n,k

anbk⟨f(en), ek⟩

= ∑
n,k

anbk⟨en, f(ek)⟩

= ⟨∑
n

anen, f (∑
k

bkek)⟩

= ⟨v, f(w)⟩.
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Question 5. Let X be a topological space and let K,L be two subsets of X.

(a) Define the concepts: (i) X is Hausdorff; (ii) K is compact.

(b) Prove that if X is a Hausdorff topological space and K is a compact subset of X, then
K is closed in X.

(c) Prove that if X is a compact topological space and K ⊆X is a closed subset, then K is
compact.

(d) Suppose K and L are compact subsets of a Hausdorff topological space X. Prove that
the intersection K ∩L is compact.

Solution:

(a) We say that X is Hausdorff if for all x, y ∈ X such that x ≠ y, there exist open
neighbourhoods U of x and V of y such that U ∩ V = ∅.
We say that K is compact if for any open cover {Ui ∶ i ∈ I} of K, that is a collection of
open subsets Ui of X such that

K ⊆ ⋃
i∈I

Ui,

there exists a finite subcover, that is a finite subset {i1, . . . , in} ⊆ I such that

K ⊆ Ui1 ∪ ⋅ ⋅ ⋅ ∪Uin .

(b) We show that X ∖K is open. Let x ∈ X ∖K. For each k ∈ K, since k ≠ x there exist
open neighbourhoods Uk of k and Vk of x such that Uk ∩ Vk = ∅. Putting it together we
get an open cover

K ⊆ ⋃
k∈K

Uk,

which by compactness has a finite subcover

K ⊆ Uk1 ∪ ⋅ ⋅ ⋅ ∪Ukn =∶ U.

Consider
V ∶= Vk1 ∩ ⋅ ⋅ ⋅ ∩ Vkn ,

which is an open neighbourhood of x. We have U ∩V = ∅, therefore V ⊆X ∖U ⊆X ∖K
is an open neighbourhood of x contained in X ∖K. Therefore X ∖K is open.

(c) Consider an open cover of K:
K ⊆ ⋃

i∈I

Ui.

We can turn this into an open cover of X:

X = (X ∖K) ∪K ⊆ (X ∖K) ∪⋃
i∈I

Ui.

As X is compact, there is a finite subcover

X ⊆ (X ∖K) ∪Ui1 ∪ ⋅ ⋅ ⋅ ∪Uin .

As K ⊆X but K ∩ (X ∖K) = ∅, we must have

K ⊆ Ui1 ∪ ⋅ ⋅ ⋅ ∪Uin .

(d) By part (b), K and L are closed subsets of X. Therefore, K ∩L is a closed subset of K.
But K is compact, so by part (c), its closed subset K ∩L is also compact.
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Question 6. Recall that C0([0,1],R) denotes the space of (bounded) continuous functions
f ∶ [0,1] Ð→R.

(a) State the Weierstrass Approximation Theorem for C0([0,1],R) with the uniform norm.

(b) Suppose f ∈ C0([0,1],R) has the property that

(1) ∫
1

0
f(x)xn dx = 0 for all n = 0,1,2, . . . .

Prove that f is the constant function 0 on [0,1].

(c) Give an explicit discontinuous function f ∶ [0,1] Ð→R that satisfies equation (1) but
is (obviously) not the constant function 0 on [0,1].

Solution:

(a) Let A be the subset of C0([0,1],R) consisting of polynomial functions. Then A is dense
in C0([0,1],R) with respect to the uniform norm.

(b) Let M be an upper bound for ∣f ∣ on [0,1]. If M = 0, we are done. So we may assume
now that M > 0.
Let ε > 0. By the Weierstrass Approximation Theorem there exists p ∈ A such that

∣f(x) − p(x)∣ < ε

M
for all x ∈ [0,1].

Writing p(x) = ∑d
n=0 anx

n with an ∈R, we have by the linearity of the integral and by
the hypothesis in the question:

∫
1

0
f(x)p(x)dx =

d

∑
n=0

an∫
1

0
f(x)xn dx = 0.

Then

∣∫
1

0
f(x)2 dx∣ = ∣∫

1

0
f(x)(f(x) − p(x))dx∣

⩽ ∫
1

0
∣f(x)∣ ∣f(x) − p(x)∣dx ⩽M ε

M
= ε.

Since this holds for all ε > 0, we conclude that the integral of the non-negative continuous
function f(x)2 on [0,1] is zero, hence f(x)2 is the constant function 0 on [0,1], hence
so is f(x).

(c) There are many options here, but we can take for instance

f(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x ≠ 1
2

1 if x = 1
2 .
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Question 7. In this question, we endow the product S ×T of any two metric spaces S and T
with its Manhattan metric:

d((s1, t1), (s2, t2)) = dS(s1, s2) + dT (t1, t2).

(a) Prove that if S and T are complete metric spaces, then the metric space S × T is
complete.

(b) Define the concept of completion of a metric space X.

(c) Let X, Y be metric spaces and fix completions (X̂, ιX) of X and (Ŷ , ιY ) of Y .

Prove that (X̂ × Ŷ , ιX × ιY ) is a completion of X × Y .

Solution:

(a) Let (sn, tn) be a Cauchy sequence in S × T . I claim that (sn) is Cauchy in S and (tn)
is Cauchy in T .
Let ε > 0. There exists N ∈N such that for all m,n ⩾ N we have

dS(sn, sm) ⩽ d((sn, tn), (sm, tm)) < ε,

so (sn) is a Cauchy sequence in S. Since S is complete, (sn) converges to some s ∈ S.
Similarly, (tn) is a Cauchy sequence in T , which is complete, so (tn) converges to some
t ∈ T .
I claim that (sn, tn) converges to (s, t). Let ε > 0. There exists N1 ∈N such that for all
n ⩾ N1 we have dS(sn, s) < ε/2. There exists N2 ∈ N such that for all n ⩾ N2 we have
dT (tn, t) < ε/2. Let N =max{N1,N2}, then for all n ⩾ N we have

d((sn, tn), (s, t)) = dS(sn, s) + dT (tn, t) < ε.

(b) A completion of X is a pair (X̂, ιX) where X̂ is a complete metric space and ιX ∶ X Ð→ X̂

is a distance-preserving map such that ιX(X) is dense in X̂.

(c) First, X̂ × Ŷ is complete since both X̂ and Ŷ are complete.
Let d̂ denote the Manhattan metric on X̂ × Ŷ . We show that ι ∶= ιX × ιY is distance-
preserving:

d̂(ι(x1, y1), ι(x2, y2)) = d̂X(ιX(x1), ιX(x2)) + d̂Y (ιY (y1), ιY (y2))
= dX(x1, x2) + dY (y1, y2)
= d((x1, y1), (x2, y2)).

To show that the image of ι is dense in X̂ × Ŷ , let (x̂, ŷ) ∈ X̂ × Ŷ and let ε > 0.

Since ιX(X) is dense in X̂, there exists x ∈X such that d̂X(ιX(x), x̂) < ε/2. Similarly,
there exists y ∈ Y such that d̂Y (ιY (y), ŷ) < ε/2. Then

d̂(ι(x, y), (x̂, ŷ)) < ε

2
+ ε

2
= ε.
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Question 8. (a) Let X be a metric space.
Define the concepts: (i) X is complete; (ii) f ∶ X Ð→X is a contraction; (iii) x ∈X
is a fixed point of f ∶ X Ð→X.
Give the complete statement of the Banach Fixed Point Theorem.

(b) Consider the function f ∶ R Ð→ R given by f(x) = x2. Find a positive real number
a > 0 such that f satisfies the hypotheses of the Banach Fixed Point Theorem on the
interval [−a, a].
Give your best guess for how large you can make a (without proof).

(c) What is the largest interval on which the conclusion of the Banach Fixed Point
Theorem holds for the same function f(x) = x2?

Solution:

(a) A metric space X is complete if every Cauchy sequence in X has a limit in X.
A map f ∶ X Ð→X is a contraction if there exists C ∈ [0,1) such that

d(f(x1), f(x2)) ⩽ Cd(x1, x2) for all x1, x2 ∈X.

A point x ∈X is a fixed point of f if f(x) = x.
The Banach Fixed Point Theorem: Let X be a nonempty complete metric space and
let f ∶ X Ð→X be a contraction. Then f has a unique fixed point in X. Moreover, for
any choice of x1 ∈X, the sequence (xn) defined by xn+1 = f(xn) converges to the fixed
point x.

(b) Let 0 < a < 1
2 and let x1 ≠ x2 ∈ [−a, a]; wlog x1 < x2. By the Mean Value Theorem

applied to f(x) = x2 on the interval [x1, x2], there exists ξ ∈ (x1, x2) such that

∣f(x2) − f(x1)∣ = ∣f ′(ξ)∣ ∣x2 − x1∣ = 2∣ξ∣ ∣x2 − x1∣ < 2a ∣x2 − x1∣
⩽ C ∣x2 − x1∣

if we set C = 2a < 1. This tells us that f is a contraction for any 0 < a < 1
2 . It is easy

to check that f also maps [−a, a] to [−a, a] under the same condition, so the Banach
Fixed Point Theorem can be invoked. In fact, for the function f(x) = x2 we have

sup
x1≠x2∈[−a,a]

∣f(x1) − f(x2)
x1 − x2

∣ = sup
x1≠x2∈[−a,a]

∣x1 + x2∣ = 2a,

so the smallest constant C we can take on the interval [−a, a] is 2a, therefore the
constraint C ∈ [0,1) forces a < 1

2 .

(c) I claim that the largest interval is (−1,1).
The equation x = f(x) = x2 has two solutions: x = 0 and x = 1, so the uniqueness part
of the conclusion gives us two possible largest intervals: (−∞,1) or (0,∞). However, if
∣x1∣ ⩾ 1 then the iteration xn+1 = f(xn) gives a sequence whose terms in absolute value
∣x1∣2

n go to infinity, so the sequence does not converge, which imposes the constraint
∣x1∣ < 1. Intersecting this with (−∞,1) gives (−1,1), whereas intersecting it with (0,∞)
gives (0,1), which does not contain one of the solutions anymore.
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