Question 1. For each n € N define f,: [0,1] — R by

(a)
(b)

(c)

1-2z"

1427

fn(x) =

Show that f,, is continuous and bounded for all n € N.

Define the concept: the sequence ( fn) converges pointwise to f: [0,1] — R.
Find the pointwise limit f of the sequence ( fn)

Define the concept: the sequence ( fn) converges uniformly to f: [0,1] — R.

Determine whether the sequence ( fn) converges uniformly to the pointwise limit f from
part (b).

Solution:

(a)

Both 1 —2" and 1+ 2™ are continuous, and 1+ 2" is nonzero on [0, 1], so the quotient
fn is continuous on [0, 1].

It is then clear that f, is bounded, as it is continuous on the compact domain [0,1]; or
we can bound it explicitly: for 0<x <1 we have 0<1-2"<land 1<1+2"<2, so
1-an
< <
1+am

The sequence (fn) converges pointwise to f: [0,1] — R if for every z € [0,1] the
sequence of real numbers ( fn(a:)) converges to the real number f(z).

Alternative: for every z € [0,1] and every ¢ > 0 there exists N € N such that for all
n > N we have

(@) = f2)] <&
Note that at « =1 we have f,(1)=2=0, so f(1) =0.
But if < 1 then (z") — 0 as n —> oo, so that

1-2zn 1
= —)—:1’
1+2zm 1

fn()

and so f(z) =1. In summary:

1 if0<z<l
f(z)_{o if =1,

The sequence ( fn) converges uniformly to f: [0,1] — R if the sequence of real numbers
(1f2 = flle) converges to 0, where for any continuous function g: [0,1] — R we have

lglloo = sup |g(x)].

ze(0,1

Equivalently: for every € > 0 there exists IV € N such that for all n > N we have
|fn(x) - f(x)] <€ for all z € [0,1].

As the f,, are all continuous, if (f,,) — f uniformly then f would be continuous. Since
that is not the case, the convergence is not uniform.
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Question 2. (a) Define the notion of adjoint map of a continuous linear map f: X — Y
between Hilbert spaces.

(b) Let f: X — Y be a continuous linear map between Hilbert spaces. Prove that
* : L
ker(f ): (1mf) .

(¢) Give an example of a Hilbert space H and a continuous linear map f: H — H such
that

H=im foker f
and neither im f nor ker f is the zero space.
Solution:

(a) The adjoint f*: Y — X is the unique element of L(Y, X) with the property that

(f(x),y) =z, f*(v)) forallze X,yeY.

Alternative: let ®x: X — XV and ®y: Y — YV be the conjugate-linear isometries
given by the Riesz Representation Theorem and let fV: YV — XV be the dual linear
transformation of f, then the adjoint f*: Y — X is defined by

f* — (I);(l Of\/ O(I);/l.
(b) We have

ye(imf)l@ny(x) for all z € X
— (f(x),y)z() for all x € X
— (x,f*(y)):O for all x € X
— f*(y)=0
< yeker [~

(c) Let H=C?and f: C? — C?2 given by multiplication by the matrix [(1) 8] The claim
follows from the Hilbert Projection Theorem since H =im f & (im f )L =im f @ ker f* =
im f @ ker f as f = f* is self-adjoint.

Or we can check directly that im f = Ce; and ker f = Cesy, hence the claim.
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Question 3. Let f: X — Y be a continuous function between metric spaces.
(a) Define the concept: f is uniformly continuous.
(b) Prove that if X is compact, then f is uniformly continuous.

(c) Prove that if f: X — Y is uniformly continuous and (x,) is a Cauchy sequence in X,
then ( f (a:n)) is a Cauchy sequence in Y.

(d) Give an example of a continuous function f: X — Y that is not uniformly continuous.

Solution:

(a) We say that f: X — Y is uniformly continuous if for any ¢ > 0 there exists § > 0 such

that
if dx(x,2")<d then dy(f(x),f(x')) <e.
(b) Let £ > 0.
Given z € X, there exists §(x) > 0 such that f(B(;(x)(x)) c BE/Q(f(x)). We get an open
cover of X:

Xc U Bg(x)/g(l‘),

reX

which therefore has a finite subcover

N
Xc LLJl B(S(xn)/g(i[)n).

Let 6 =min{6(z,)/2: n=1,...,N}.
Suppose s,t € X are such that dx(s,t) <. We have s € Bs(,,)/2(2,) for some n €
{1,...,N}. I claim that ¢ € Bs(,,)(2n):

0(,)
2
Therefore f(s), f(t) € BE/Q(f(xn)), hence dy (f(s), f(t)) <e.
(c) For all ne N, set y, = f(x,).

Let € >0. As f is uniformly continuous, there exists § > 0 such that for all z, 2" € X, if
dx(z,2') < § then dy(f(z), f(z')) <e.

But (z,) is Cauchy in X, so given this § there exists N € N such that dx(z,,,,) <0
for all n,m > N. Therefore dy(yn,ym) <e forall n,m> N.

dx(t,x,) <dx(t,s)+dx(s,x,) <+

<o(zyp).

(d) Take f: (0,1) — R given by f(z) =1, then f is continuous on (0,1), but it maps the
Cauchy sequence (1/n) to the sequence (n), which is not Cauchy.
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Question 4. Consider the Hilbert space ¢? of square-summable sequences a = (a1, as, ... )
and let {e,es,...} with e; = (1,0,0,...), e2=(0,1,0,...), ..., be the standard Schauder basis
for ¢2.

Let f: £? — (2 be a linear transformation.

(a) Show that if f is a continuous linear map then the sequence (| f(e,)|) is bounded.
(b) Writing
f(en) = Z Cnm Em,
m=1

give a condition on the coefficients c¢,,, that is necessary and sufficient for f to be
self-adjoint.

Solution:

(a) We know that a linear map f is continuous if and only if it is Lipschitz, that is there
exists C' > 0 such that
[f()| <Clo] for all v.

In particular, if f is continuous then for all n € N we have
[f(en)] < Clenl =C
so (||f(en)|) is a bounded sequence in R.
(b) Suppose f is self-adjoint, then
(f(en),ex) = (en, flexr)) for all k,n e N. (*)
The left hand side is

(f(en) ek < Z Cnm€m7€k> = Z Cnm emaek> = Cnk,

m=1 m=1

while the right hand side is

(en,f(ek))=<en, ickmem) iﬁ (€n,em) = Crn.

m=1
We conclude that (*) is equivalent to:

Cnk = Ckn for all k,n e N.

If (*) holds, it is easy to see that

(f(v),w < (Zanen),Zbkek>
= Zanbk f(en),ex)
Z bi{en f(ex))

n,k

o5
n k
= (v, f(w)).

MAST30026

Metric and Hilbert Spaces Page 6 of 10 Semester 2, 2024



Question 5. Let X be a topological space and let K, L be two subsets of X.
(a) Define the concepts: (i) X is Hausdorff; (ii) K is compact.

(b) Prove that if X is a Hausdorff topological space and K is a compact subset of X, then
K is closed in X.

(c) Prove that if X is a compact topological space and K € X is a closed subset, then K is
compact.

(d) Suppose K and L are compact subsets of a Hausdorff topological space X. Prove that
the intersection K n L is compact.

Solution:

(a) We say that X is Hausdorff if for all x,y € X such that = # y, there exist open
neighbourhoods U of x and V' of y such that UnV = &.

We say that K is compact if for any open cover {U;: i € I} of K, that is a collection of
open subsets U; of X such that
Kc U Ui,
iel
there exists a finite subcover, that is a finite subset {i,...,7,} € I such that

KcU,u-ul,.

(b) We show that X \ K is open. Let z € X \ K. For each k € K, since k # = there exist
open neighbourhoods Uy of k£ and V. of x such that U, n'V}, = @. Putting it together we

get an open cover

Kc U Uk,
keK

which by compactness has a finite subcover
KcUgu---uU, =U.
Consider
Vo= Vkl A---N an’

which is an open neighbourhood of . We have UnV = @, therefore Ve X\U c X\ K
is an open neighbourhood of x contained in X \ K. Therefore X \ K is open.

(c) Consider an open cover of K:
KcJU;.

iel
We can turn this into an open cover of X:

X=(X\K)uKc(X~K)ulJU

iel
As X is compact, there is a finite subcover
Xc(XNK)uUyu---ul;
As K< X but Kn (X \ K) =@, we must have
KcU;,u---ulU,,.

n*

(d) By part (b), K and L are closed subsets of X. Therefore, K n L is a closed subset of K.
But K is compact, so by part (c), its closed subset K n L is also compact.
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Question 6. Recall that Cy([0,1],R) denotes the space of (bounded) continuous functions

(a) State the Weierstrass Approximation Theorem for Cy([0, 1], R) with the uniform norm.
(b) Suppose f € Cy([0,1],R) has the property that
1
(1) [ f(x)az"dx=0 foralln=0,1,2,....
0

Prove that f is the constant function 0 on [0, 1].

(¢) Give an explicit discontinuous function f: [0,1] — R that satisfies equation (1) but
is (obviously) not the constant function 0 on [0,1].

Solution:

(a) Let A be the subset of Cy([0,1],R) consisting of polynomial functions. Then A is dense
in Cy([0,1],R) with respect to the uniform norm.

(b) Let M be an upper bound for |f| on [0,1]. If M =0, we are done. So we may assume
now that M > 0.

Let € > 0. By the Weierstrass Approximation Theorem there exists p € A such that
1f(2) - p(2)| < % for all z € [0,1].

Writing p(z) = $.¢_, a,z™ with a, € R, we have by the linearity of the integral and by
the hypothesis in the question:

Jgaﬂmnﬁx)dv=é;mtAlf@ﬁm"dx=O.
Then
| [ (@) =) o
< L@@ - dr <M e

‘folf(:v)Zda:

Since this holds for all € > 0, we conclude that the integral of the non-negative continuous
function f(x)? on [0,1] is zero, hence f(z)? is the constant function 0 on [0, 1], hence

so is f(x).
(¢) There are many options here, but we can take for instance

f@ﬁz{o if ozl

1 ifl':%.
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Question 7. In this question, we endow the product S x T of any two metric spaces S and T’
with its Manhattan metric:

d((Sl,tl), (Sg,tg)) = ds(Sl, 82) + dT(tl,tQ).

(a) Prove that if S and T are complete metric spaces, then the metric space S x T is
complete.

(b) Define the concept of completion of a metric space X.

(c) Let X, Y be metric spaces and fix completions (X, LX) of X and (37, Ly) of Y.
Prove that (X x )7, Ly X Ly) is a completion of X x Y.

Solution:

(a) Let (sp,tn) be a Cauchy sequence in S x T. T claim that (s,) is Cauchy in S and (¢,)
is Cauchy in T

Let € > 0. There exists N € N such that for all m,n > N we have

dS(Sna Sm) N d((snatn)a (8m7tm)) <eg,

so (sp) is a Cauchy sequence in S. Since S is complete, (s, ) converges to some s € S.
Similarly, (¢,) is a Cauchy sequence in T, which is complete, so (¢,) converges to some
telT.

I claim that (s,,t,) converges to (s,t). Let € >0. There exists N; € N such that for all
n > N7 we have dg(s,,s) < &/2. There exists Ny € N such that for all n > N, we have
dr(tn,t) <e/2. Let N = max{Ny, Ny}, then for all n> N we have

A(($nstn), (5,1)) = ds(sn, 8) + dr(tn,t) <e.

(b) A completion of X is a pair ()? ,L X) where X is a complete metric space and tx : X — X
is a distance-preserving map such that ¢x(X) is dense in X.
(c) First, X x Y is complete since both X and Y are complete.
Let d denote the Manhattan metric on X x Y. We show that ¢ := Lx X ty is distance-
preserving:
C/Z\(L(Ila Y1), L(I27y2)) = CTX(LX(xl); LX($2)) + C/l\Y(LY(yl)a LY(Z/2))
= dx (21, 22) + dy (y1,92)
= d((ﬂﬂlayl)’ (x27y2))-

To show that the image of ¢ is dense in X xY, let (51:‘, ’;J) € X xY and let € > 0.

Since 1y (X) is dense in X, there exists z € X such that dx (tx(z),T) < /2. Similarly,
there exists y € Y such that dy (ty(y),7) <&/2. Then

(. y), (D) <5+5 =<
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Question 8. (a) Let X be a metric space.

Define the concepts: (i) X is complete; (ii) f: X — X is a contraction; (iii) z € X
is a fixed point of f: X — X.

Give the complete statement of the Banach Fixed Point Theorem.
(b) Consider the function f: R — R given by f(x) = 22. Find a positive real number

a > 0 such that f satisfies the hypotheses of the Banach Fixed Point Theorem on the
interval [-a,a].

Give your best guess for how large you can make a (without proof).
(c) What is the largest interval on which the conclusion of the Banach Fixed Point

Theorem holds for the same function f(x) = 22?7
Solution:

(a) A metric space X is complete if every Cauchy sequence in X has a limit in X.

A map f: X — X is a contraction if there exists C € [0,1) such that
d(f(xz1), f(x2)) < Cd(xq,x2) for all x1, 25 € X.

A point x € X is a fixed point of f if f(z) = z.

The Banach Fixed Point Theorem: Let X be a nonempty complete metric space and
let f: X — X be a contraction. Then f has a unique fixed point in X. Moreover, for
any choice of 21 € X, the sequence (z,) defined by x,,1 = f(z,) converges to the fixed
point .

(b) Let 0 < a < 3 and let z; # x5 € [-a,a]; wlog z1 < z5. By the Mean Value Theorem
applied to f(x) = z? on the interval [z1,x5], there exists £ € (x1,x2) such that

|f(x2) = f(z1)] = [[(E)]|v2 — 21| = 2|¢] w2 — 21| < 2a|z2 — 24

<C|l’2—.’171|

if we set C' =2a < 1. This tells us that f is a contraction for any 0 < a < % It is easy
to check that f also maps [-a,a] to [-a,a] under the same condition, so the Banach
Fixed Point Theorem can be invoked. In fact, for the function f(x) = 22 we have

f(z1) = f(22)

T — X2

sup
z1#x2€[—a,a]

= sup |z + 2| = 2a,
z1#x2€[—a,a]

so the smallest constant C' we can take on the interval [-a,a] is 2a, therefore the
constraint C € [0,1) forces a < 3.

(c) T claim that the largest interval is (-1, 1).

The equation x = f(z) = 22 has two solutions: x =0 and z = 1, so the uniqueness part
of the conclusion gives us two possible largest intervals: (—oo,1) or (0, 00). However, if
|z1| > 1 then the iteration x,,1 = f(z,) gives a sequence whose terms in absolute value
|z1]?" go to infinity, so the sequence does not converge, which imposes the constraint
|z1| < 1. Intersecting this with (—oo, 1) gives (-1,1), whereas intersecting it with (0, c0)
gives (0, 1), which does not contain one of the solutions anymore.
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